登录
首页 » matlab » matlab文件

matlab文件

于 2005-11-25 发布 文件大小:23KB
0 162
下载积分: 1 下载次数: 0

代码说明:

说明:  好多m文件,有兴趣或需要的朋友赶快down下来(many documents are interested or in need of a friend down to see quickly down)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • hfjh
    摄影测量中求的相片的6个外方位元素是所用的后方交会程序(Resection)
    2010-05-12 14:30:41下载
    积分:1
  • MatLabcommand
    matlab 在图像处理应用中的命令大全。希望对您有用(matlab in image processing applications including most of the command. Hope useful to you)
    2010-05-21 10:52:02下载
    积分:1
  • kpca
    核主元分析程序,基于主元分析进行开发编写,可实现核空间数据降维(KPCA program developed to prepare based on principal component analysis, nuclear spatial data dimensionality reduction)
    2015-03-16 10:40:51下载
    积分:1
  • arModel_shm
    使用matlab编程实现AR模型中的参数确定(AR model)
    2012-11-20 11:32:48下载
    积分:1
  • 基于matlab的QPSK仿真
    说明:  QPSK仿真,通过高斯信道,瑞利信道进行调制解调,计算误码率,绘制星座图(QPSK simulation, through the Gaussian channel, Rayleigh channel modulation and demodulation, calculate the bit error rate, draw constellation)
    2021-04-21 21:25:45下载
    积分:1
  • DFAFcooperativerelayinLTE-A
    说明:  LTE-A中的AF和DF中继研究,比较有用(LTE-A in the AF and DF relaying research, more useful)
    2011-03-11 21:55:54下载
    积分:1
  • wiener
    wiener fitter emulation
    2012-11-26 16:40:29下载
    积分:1
  • 四轮驱动模型
    说明:  本压缩包包含两个大型simulink全驱越野电动汽车模型,论文,参数文档;可实现模糊pid仿真,新型驱动结构仿真对比,十一自由度的汽车模型进行横摆与前倾仿真,实现自动回正,并进行回正速度和稳定性进行优化(This compression package includes two large-scale Simulink full drive off-road electric vehicle models, papers and parameter documents; it can realize fuzzy PID simulation, simulation comparison of new driving structure, simulation of yaw and forward tilt of 11 DOF vehicle model, realize automatic righting, and optimize the righting speed and stability)
    2020-01-04 20:00:36下载
    积分:1
  • poiss_prma
    this is a simple version of PRMA algorithm, a shared medium access protocol.
    2010-07-20 22:16:27下载
    积分:1
  • sparse_coding
    .Sparse coding algorithm.We can also apply it onefficient sparse coding algorithm to a new machine learning framework called "self-taught learning", where we are given a small amount of labeled data for a supervised learning task, and lots of additional unlabeled data that does not share the labels of the supervised problem and does not arise from the same distribution.
    2009-11-03 14:03:22下载
    积分:1
  • 696518资源总数
  • 105714会员总数
  • 27今日下载