登录
首页 » matlab » Motion-Detection

Motion-Detection

于 2011-03-07 发布 文件大小:608KB
0 216
下载积分: 1 下载次数: 0

代码说明:

说明:  matlab实现视频中动态目标跟踪,试验过,可以用,帧插法实现(matlab dynamic target tracking in video, tested, you can use, frame interpolation to achieve)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Untitled2
    使用于机械最优化设计课程的检索优化方法的最速下降法(Optimized for use in mechanical retri method optimized design courses steepest descent method)
    2015-03-22 22:42:39下载
    积分:1
  • lunhide
    用MATLAB程序,实现了在空域下,对图片的亮度值写入秘密信息的程序,很有参考价值(With the MATLAB program, implemented in the airspace, the brightness value of the picture written procedures for confidential information)
    2010-07-20 01:32:31下载
    积分:1
  • AnalogIRSen
    information about analog com for ir sensor interface
    2010-07-28 14:42:54下载
    积分:1
  • Lecture8_exc_1
    electric motor with torque speed control
    2012-03-23 02:54:17下载
    积分:1
  • dsp-_010
    digital signal processing butterfly
    2011-05-23 23:37:08下载
    积分:1
  • Bai
    白志东给出的对于高维数据两总体均值检验的程序,可以参考下(high dimension)
    2014-09-20 18:24:47下载
    积分:1
  • series4
    exercice for matlab machine learning
    2010-11-30 00:58:48下载
    积分:1
  • inmin01
    用积分最小值准则来求P,PI,PID的个参数,其中Gc是校正器的传递函数,kp为比例系数, Ti为积分时间常数,Td为微分时间常数,输入参量vars为带迟滞--惯性环节模型的[K T τ],已知参数k=vars(1);T=vars(2);ι=vars(3),iC=vars(4) (Minimum criteria of integral seeking P, PI, PID' s parameters, which Gc is the corrector transfer function, kp is proportional coefficient, Ti for the integral time constant, Td for the differential time constant, input parameters vars as with hysteresis- inertia model of [KT τ], known parameters k = vars (1) T = vars (2) ι = vars (3), iC = vars (4) )
    2010-05-18 20:35:38下载
    积分:1
  • Optimization_Newton
    设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0)+f (x0)(x-x0),求出L与x轴交点的横坐标 x1 = x0-f(x0)/f (x0),称x1为r的一次近似值。过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴交点的横坐标 x2 = x1-f(x1)/f (x1),称x2为r的二次近似值。重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f (x(n)),称为r的n+1次近似值(Let r is f (x) = 0 root, select the initial approximation x0 as the r, over point (x0, f (x0)) to do the curve y = f (x) the tangent L, L the equation y = f ( x0)+ f ' (x0) (x-x0), find the intersection of L and the x-axis of abscissa x1 = x0-f (x0)/f' (x0), x1 is called an approximation r. Through points (x1, f (x1)) to do the curve y = f (x) the tangent, and find the intersection of the tangent with the x-axis of abscissa x2 = x1-f (x1)/f ' (x1), x2 is called r the second approximation. Repeat the process, get an approximation of the sequence r, where x (n+1) = x (n)-f (x (n))/f ' (x (n)), as an approximation of r n+1 times)
    2011-06-21 21:13:09下载
    积分:1
  • addadaadadadadadadadadadad
    Under the assumption of absolutely no deterministic knowledge about the signal X(n), i.e., we assume that we know only the average power in the signal. In this case the optimal detector is energy detector or radiometer can be represented as [23]
    2012-09-25 13:55:19下载
    积分:1
  • 696518资源总数
  • 105873会员总数
  • 12今日下载