登录
首页 » matlab » 演示程序一维搜索

演示程序一维搜索

于 2005-12-06 发布 文件大小:17KB
0 274
下载积分: 1 下载次数: 0

代码说明:

说明:  对二杆桁架静力分析,一维搜索的matlab演示程序。(of two truss static analysis, one-dimensional search Matlab demo program.)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • MATLAB
    有限元FEM工具箱-MATLAB toolbox(FEM Finite Element Toolbox-MATLAB toolbox)
    2010-10-06 17:29:39下载
    积分:1
  • polyphase
    Efficient polyphase filter implementation
    2012-07-05 23:12:49下载
    积分:1
  • grey predication
    预测数据,数据分析,进行经济数据的多年预测,用途广泛(Forecast data, data analysis, multi-year forecast of economic data, widely used)
    2020-06-17 20:40:04下载
    积分:1
  • SVM
    本程序是用来实现SVM算法,可以用在 模式识别处理中。(This procedure is used to implement SVM algorithm can be used in pattern recognition processing.)
    2010-07-12 10:07:13下载
    积分:1
  • EFI_Toolkit_1.10.14.62
    EFI Application Toolkit Version 1.10.14.62 (EFI Application Toolkit Version 1.10.14.62)
    2010-11-02 00:11:55下载
    积分:1
  • LGIF
    说明:  这是“Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation”(简称LGIF模型)的MATLAB源代码。LGIF模型是非常重要局部区域活动轮廓模型, 它结合了CV模型和LBF模型各自的优点。(This is the "Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation" (referred to as LGIF model) of the MATLAB source code. LGIF model is very important to local area active contour model, which combines the CV model and the merits of LBF model.)
    2011-03-17 17:02:39下载
    积分:1
  • matlab
    数字图像频域滤波处理,分别进行二阶巴特沃斯(Butterworth)高通、低通滤波器。(Digital image processing frequency domain filtering, respectively second-order Butterworth (Butterworth) high pass, low pass filter.)
    2013-07-10 18:46:01下载
    积分:1
  • CTC_DEC
    使用m语言完成的关于CTC(Convolutional Turbo Code)编码方案(CTC decoding algorithm)
    2011-01-26 19:08:29下载
    积分:1
  • GPC
    说明:  广义预测控制的matlab实现,有着非常好的跟踪和预测效果(Generalized predictive control, has a good tracking and prediction)
    2010-04-08 17:22:18下载
    积分:1
  • pade
    function [a,b] = pade(x,p,q) PADE Model a signal using the Pade approximation method ---- Usage: [a,b] = pade(x,p,q) The input sequence x is modeled as the unit sample response of a filter having a system function of the form H(z) = B(z)/A(z) The polynomials B(z) and A(z) are formed from the vectors b=[b(0), b(1), ... b(q)] a=[1 , a(1), ... a(p)] The input q defines the number of zeros in the model and p defines the number of poles.
    2012-04-18 09:52:53下载
    积分:1
  • 696516资源总数
  • 106409会员总数
  • 8今日下载