登录
首页 » matlab » matlab_utilities

matlab_utilities

于 2010-04-01 发布 文件大小:87KB
0 158
下载积分: 1 下载次数: 1

代码说明:

说明:  粒子滤波、无迹粒子滤波算法程序,高斯混合模型参数设置等详细代码(Particle filter, unscented particle filter program, Gaussian mixture model parameter settings, and more code)

文件列表:

matlab_utilities\Add_relative_Path\addrelpath.m
matlab_utilities\Add_relative_Path\Add_path.m
matlab_utilities\Add_relative_Path\Add_relative_Path.m
matlab_utilities\Add_relative_Path\remrelpath.m
matlab_utilities\Add_relative_Path\程序使用说明书.txt
matlab_utilities\Add_relative_Path
matlab_utilities\Add_relative_Path.m
matlab_utilities\DataSets\henon.m
matlab_utilities\DataSets\Newdataset2.mat
matlab_utilities\DataSets\NEW_dataset.mat
matlab_utilities\DataSets
matlab_utilities\EXP_demo_files\demo_ekf_filter_EXP.m
matlab_utilities\EXP_demo_files\demo_particle_filter_EXP2.m
matlab_utilities\EXP_demo_files\demo_unscented_filter_EXP.m
matlab_utilities\EXP_demo_files\particle_filter_Real_EXP.m
matlab_utilities\EXP_demo_files
matlab_utilities\gmm_utilities\approximate_gauss_by_gmm.m
matlab_utilities\gmm_utilities\approximate_gauss_by_kernels.m
matlab_utilities\gmm_utilities\Contents.m
matlab_utilities\gmm_utilities\covariance_intersect.m
matlab_utilities\gmm_utilities\gauss_divide.m
matlab_utilities\gmm_utilities\gauss_multiply.m
matlab_utilities\gmm_utilities\gmm_addition.m
matlab_utilities\gmm_utilities\gmm_conditional.m
matlab_utilities\gmm_utilities\gmm_convolve.m
matlab_utilities\gmm_utilities\gmm_correlate.m
matlab_utilities\gmm_utilities\gmm_counting_algorithm.m
matlab_utilities\gmm_utilities\gmm_covariance_intersect.m
matlab_utilities\gmm_utilities\gmm_derivative.m
matlab_utilities\gmm_utilities\gmm_derivative_parameters.m
matlab_utilities\gmm_utilities\gmm_display_1D.m
matlab_utilities\gmm_utilities\gmm_display_2D_contour.m
matlab_utilities\gmm_utilities\gmm_distance_bayes.m
matlab_utilities\gmm_utilities\gmm_distance_bhattacharyya.m
matlab_utilities\gmm_utilities\gmm_distance_KLD.m
matlab_utilities\gmm_utilities\gmm_divide.m
matlab_utilities\gmm_utilities\gmm_em.m
matlab_utilities\gmm_utilities\gmm_em_auto.m
matlab_utilities\gmm_utilities\gmm_entropy.m
matlab_utilities\gmm_utilities\gmm_evaluate.m
matlab_utilities\gmm_utilities\gmm_marginal.m
matlab_utilities\gmm_utilities\gmm_multiply.m
matlab_utilities\gmm_utilities\gmm_normalise.m
matlab_utilities\gmm_utilities\gmm_reduce_merge.m
matlab_utilities\gmm_utilities\gmm_reduce_truncate.m
matlab_utilities\gmm_utilities\gmm_remove_zeros.m
matlab_utilities\gmm_utilities\gmm_samples.m
matlab_utilities\gmm_utilities\gmm_samples_old.m
matlab_utilities\gmm_utilities\gmm_slice.m
matlab_utilities\gmm_utilities\gmm_subtract.m
matlab_utilities\gmm_utilities\gmm_to_gaussian.m
matlab_utilities\gmm_utilities\gmm_transform.m
matlab_utilities\gmm_utilities\gmm_update.m
matlab_utilities\gmm_utilities\gmm_update_linearised.m
matlab_utilities\gmm_utilities\kernel_convolve.m
matlab_utilities\gmm_utilities\kernel_distance_bayes.m
matlab_utilities\gmm_utilities\kernel_distance_bhattacharyya.m
matlab_utilities\gmm_utilities\kernel_distance_KLD.m
matlab_utilities\gmm_utilities\kernel_divide.m
matlab_utilities\gmm_utilities\kernel_evaluate.m
matlab_utilities\gmm_utilities\kernel_multiply.m
matlab_utilities\gmm_utilities\kernel_normalise.m
matlab_utilities\gmm_utilities\kernel_reduce_merge.m
matlab_utilities\gmm_utilities\kernel_reduce_truncate.m
matlab_utilities\gmm_utilities\kernel_samples.m
matlab_utilities\gmm_utilities\kernel_to_gaussian.m
matlab_utilities\gmm_utilities\kernel_transform.m
matlab_utilities\gmm_utilities\kernel_update.m
matlab_utilities\gmm_utilities\KF_update_w.m
matlab_utilities\gmm_utilities\KF_update_w_simple.m
matlab_utilities\gmm_utilities\make_random_gmm.m
matlab_utilities\gmm_utilities\Notes.txt
matlab_utilities\gmm_utilities
matlab_utilities\matlab_utilities\chi_square_bound.m
matlab_utilities\matlab_utilities\chi_square_density.m
matlab_utilities\matlab_utilities\chi_square_mass.m
matlab_utilities\matlab_utilities\chi_square_to_gauss.m
matlab_utilities\matlab_utilities\Contents.m
matlab_utilities\matlab_utilities\Copy_of_demo_particle_filter.m
matlab_utilities\matlab_utilities\demo_bearing_only.m
matlab_utilities\matlab_utilities\demo_chi_square.m
matlab_utilities\matlab_utilities\demo_ekf_filter.m
matlab_utilities\matlab_utilities\demo_kmeans.m
matlab_utilities\matlab_utilities\demo_particle_filter.m
matlab_utilities\matlab_utilities\demo_unscented_filter.m
matlab_utilities\matlab_utilities\distance_bhattacharyya.m
matlab_utilities\matlab_utilities\distance_KLD.m
matlab_utilities\matlab_utilities\distance_KLD_symmetric.m
matlab_utilities\matlab_utilities\distance_mahalanobis.m
matlab_utilities\matlab_utilities\distance_normalised.m
matlab_utilities\matlab_utilities\dist_sqr.m
matlab_utilities\matlab_utilities\dist_sqr_.m
matlab_utilities\matlab_utilities\dist_sqr_v2.m
matlab_utilities\matlab_utilities\EKF_update.m
matlab_utilities\matlab_utilities\ellipse_mass.m
matlab_utilities\matlab_utilities\ellipse_sigma.m
matlab_utilities\matlab_utilities\gauss_evaluate.m
matlab_utilities\matlab_utilities\gauss_likelihood.m
matlab_utilities\matlab_utilities\gauss_regularise.m
matlab_utilities\matlab_utilities\gauss_samples.m

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • VBLAST_MIMO
    MIMO VBLAST Matlab Programs
    2010-03-06 05:53:35下载
    积分:1
  • BOT_SIR
    bearing only tarcking based sampleing importance resampling (SIR) filter(bearing only tarcking based sampleing The need ortance resampling (SIR) filter)
    2007-04-19 11:29:03下载
    积分:1
  • DEKF
    Dual kalman filter for battery charge estimation
    2013-10-09 04:57:41下载
    积分:1
  • RSSI
    基于RSSI的定位。本人精心编出来的哦。。()
    2013-04-12 22:04:28下载
    积分:1
  • MATLAB_vc_hybrid
    介绍了matlab与vc的混合编程,和常见问题解决方案(Introduces MATLAB and VC mixed programming, and common problems and Solutions)
    2012-05-07 13:45:27下载
    积分:1
  • matlab
    在采样点之间的频率响应是由各采样点的加权内插函数叠加而形成的,因而有一定的逼近误差。该误差大小取决于理想频率响应的形状,理想频响特性变化越平缓,内插值越接近理想值,逼近误差越小;反之,如果采样点之间的理想频响特性变化越陡,则内插值与理想值之间的误差越大,因而在理想滤波器不连续点的两边,就会产生尖峰,而在通带和阻带就会产生波纹。用频率采样法设计的实际滤波器频率响应如图1所示。由图1可知,实际滤波器的阻带衰减取决于内插函数第一旁瓣幅度值的大小,其大小决定了所设计的滤波器的阻带性能。(Interpolation function superimposed between sampling points of the frequency response is weighted within each sampling point and the formation of, and thus have a certain degree of approximation error. The size of this error depends on the shape of the ideal frequency response and the ideal frequency response characteristic change is more gentle, interpolated and more close to the ideal value, the smaller the approximation errors Conversely, if the sampling point between the ideal frequency response characteristics of the steeper the change, and then the interpolated the larger the error between the ideal value, and thus in the ideal filter both sides of the discontinuity point, will produce spikes occurs ripple in the passband and stopband. Actual design frequency sampling filter frequency response is shown in Figure 1. Figure 1 shows, the actual filter stopband attenuation depending on the interpolation value of the size of the first side-lobe amplitude of the function that determin)
    2013-03-12 13:47:15下载
    积分:1
  • two-music
    通过比较两个music算法,得出哪一个实用性比较好(Music by comparing the two algorithms, which reached a relatively good practicality)
    2007-10-10 19:37:58下载
    积分:1
  • Point-Of-Sale
    POS inventory system
    2014-11-16 19:36:35下载
    积分:1
  • hu
    说明:  胡氏不变矩,matlab程序,稳定运行,能区分两张图片的不同(Hu invariant moments, matlab program, stable operation, can distinguish between two different images)
    2014-12-12 15:23:18下载
    积分:1
  • gradsmetafile.m
    metafile for grads developed in matlab
    2013-03-07 05:22:53下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载