登录
首页 » matlab » yudong

yudong

于 2010-04-12 发布 文件大小:829KB
0 167
下载积分: 1 下载次数: 1

代码说明:

说明:  运动目标识别,采用背景差分方法。背景图像由均值法获得。里面的视频换成前几帧换成纯背景效果能更好一点(Moving target identification, using the background difference method. Background image obtained from the mean. Which replaced the previous video frame replaced by pure background a little better results)

文件列表:

yudongguji\main.asv
yudongguji\main.m
yudongguji\slprj\grt\vipmotion_win\tmwinternal\binfo.mat
yudongguji\slprj\grt\vipmotion_win\tmwinternal\minfo.mat
yudongguji\slprj\modeladvisor\vipmotion__win\Info\folder.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\folder_failed.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\folder_pass.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\folder_warning.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\geninfo.mat
yudongguji\slprj\modeladvisor\vipmotion__win\Info\icon_folder.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\icon_procedure.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\icon_task.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\icon_task_disabled.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\icon_task_pselected.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\icon_task_required.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\info_icon.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\mdladvinfo.mat
yudongguji\slprj\modeladvisor\vipmotion__win\Info\minus.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\model_diagnose.html
yudongguji\slprj\modeladvisor\vipmotion__win\Info\model_diagnose_custom.html
yudongguji\slprj\modeladvisor\vipmotion__win\Info\model_diagnose_left.html
yudongguji\slprj\modeladvisor\vipmotion__win\Info\model_diagnose_task.html
yudongguji\slprj\modeladvisor\vipmotion__win\Info\model_diagnose_top.html
yudongguji\slprj\modeladvisor\vipmotion__win\Info\plus.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\procedure_failed.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\procedure_passed.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\procedure_warning.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\report.html
yudongguji\slprj\modeladvisor\vipmotion__win\Info\task_failed.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\task_forcepass.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\task_passed.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\task_req_forcepassed.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\task_req_passed.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\task_warning.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\vandv.png
yudongguji\slprj\modeladvisor\vipmotion__win\Info\vandvback.png
yudongguji\slprj\sl_proj.tmw
yudongguji\temp4.avi
yudongguji\test.m
yudongguji\test1.m
yudongguji\vipmotion_win.exe
yudongguji\vipmotion_win_grt_rtw\buildInfo.mat
yudongguji\vipmotion_win_grt_rtw\defines.txt
yudongguji\vipmotion_win_grt_rtw\grt_main.obj
yudongguji\vipmotion_win_grt_rtw\HostLib_MMFile.obj
yudongguji\vipmotion_win_grt_rtw\HostLib_rtw.obj
yudongguji\vipmotion_win_grt_rtw\HostLib_Video.obj
yudongguji\vipmotion_win_grt_rtw\modelsources.txt
yudongguji\vipmotion_win_grt_rtw\rtGetInf.c
yudongguji\vipmotion_win_grt_rtw\rtGetInf.h
yudongguji\vipmotion_win_grt_rtw\rtGetInf.obj
yudongguji\vipmotion_win_grt_rtw\rtGetNaN.c
yudongguji\vipmotion_win_grt_rtw\rtGetNaN.h
yudongguji\vipmotion_win_grt_rtw\rtGetNaN.obj
yudongguji\vipmotion_win_grt_rtw\rtmodel.h
yudongguji\vipmotion_win_grt_rtw\rtwtypes.h
yudongguji\vipmotion_win_grt_rtw\rtwtypeschksum.mat
yudongguji\vipmotion_win_grt_rtw\rtw_proj.tmw
yudongguji\vipmotion_win_grt_rtw\rt_logging.obj
yudongguji\vipmotion_win_grt_rtw\rt_nonfinite.c
yudongguji\vipmotion_win_grt_rtw\rt_nonfinite.h
yudongguji\vipmotion_win_grt_rtw\rt_nonfinite.obj
yudongguji\vipmotion_win_grt_rtw\rt_sim.obj
yudongguji\vipmotion_win_grt_rtw\vipmotion_win.bat
yudongguji\vipmotion_win_grt_rtw\vipmotion_win.c
yudongguji\vipmotion_win_grt_rtw\vipmotion_win.h
yudongguji\vipmotion_win_grt_rtw\vipmotion_win.mk
yudongguji\vipmotion_win_grt_rtw\vipmotion_win.obj
yudongguji\vipmotion_win_grt_rtw\vipmotion_win_data.c
yudongguji\vipmotion_win_grt_rtw\vipmotion_win_data.obj
yudongguji\vipmotion_win_grt_rtw\vipmotion_win_private.h
yudongguji\vipmotion_win_grt_rtw\vipmotion_win_ref.rsp
yudongguji\vipmotion_win_grt_rtw\vipmotion_win_types.h
yudongguji\yudongguji\main.asv
yudongguji\yudongguji\main.m
yudongguji\yudongguji\test.m
yudongguji\yudongguji\test1.m
yudongguji\yudongguji\运动估计.ppt
yudongguji\运动估计.ppt
yudongguji\slprj\grt\vipmotion_win\tmwinternal
yudongguji\slprj\modeladvisor\vipmotion__win\Info
yudongguji\slprj\grt\vipmotion_win
yudongguji\slprj\grt\_sharedutils
yudongguji\slprj\modeladvisor\vipmotion__win
yudongguji\slprj\grt
yudongguji\slprj\modeladvisor
yudongguji\slprj
yudongguji\vipmotion_win_grt_rtw
yudongguji\yudongguji
yudongguji

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • densecrf-master
    应用条件随机场进行图像分割 使用方法:将pydensecrf-py27或pydensecrf-py35重命名为pydensecrf,放入C:Program FilesAnaconda3Libsite-packages 运行:python inference.py im1.png anno1.png out.png(Renameing the file "pydensecrf-py27" or "pydensecrf-py35" to the new name "pydensecrf" Puting this file "pydensecrf" in this directory "C:Program FilesAnaconda3Libsite-packages" cd examples/ python inference.py im1.png anno1.png out.png)
    2020-11-25 15:49:32下载
    积分:1
  • PCAKmeans
    用主成分分析来降维,用Kmeans方法聚类;应用于变化检测中(Principal component analysis is used to reduce dimension with k-means algorithm is used to cluster; change detection)
    2021-03-29 18:09:10下载
    积分:1
  • Log_MergerSharp001
    Log整合功能. 自動整理紀錄檔部份檔案.(Log Arrange. Auto Message.)
    2013-10-21 13:45:09下载
    积分:1
  • DosImage
    利用C和C++进行数字图像处理的开发,涵盖几乎所有的图像处理算法(Using C and C++ for the development of digital image processing, covering almost all image processing algorithms)
    2011-07-24 08:10:52下载
    积分:1
  • ImageSegment
    图像分割程序,采用水平集演化的思想,实现偏微分方程中的GAC模型。Image segment source code(GAC model),which adopt the idea of level set evolving.(Image segmentation procedures, the use of level set evolution of thought, the realization of partial differential equations of the GAC model. Image segment source code (GAC model), which adopt the idea of level set evolving.)
    2007-09-20 18:09:54下载
    积分:1
  • Key_Technology_for_Image_Mosaics-
    提出一种基于特征点的运动场景图像拼接算法。基于相似变换消除选取在运动物体上的特征点,并使用RANSAC算法进行外点的剔除。在融合阶段,根据齐次变换矩阵求得对2幅图像的差异图像,并执行区域增长算法。从而分割出运动区域。使用一种分段映射算法生成全景图像。实验证明了算法的有效性。(A feature-based algorithm for image mosaics of 8c宅Iles with moving objects is pI.oposcd.The algorithm eliminates the feature points which arc selected in moving objects using similarity transform,and the outliers are eliminated using RANSAC algorithm.In the image blend phase,a difference of two images is created using homogeneous transformation matrix,and a region growth algorithm is implemented SO as to segment the movmg object region.A piecewise mapping algorithm for generating panoramic images is used.Experimental results show the effectiveness of the algorithm.)
    2014-04-25 09:17:35下载
    积分:1
  • Gamma-correction
    对图像进行伽马校正,可以有效提升图像 亮度和对比度,低于低照度图像现在小于1的参数,对于高亮度的图像选择大于1的参数可以有效调节图像亮度。(Gamma correction can effectively improve the brightness and contrast of the image. The parameters lower than the low illumination image are less than 1. For the high brightness image, the selection of parameters greater than 1 can effectively adjust the brightness of the image.)
    2021-02-10 20:19:52下载
    积分:1
  • 基于OPENCV的SIFT特征提取与匹配算法 OPENCV_SIFT_VC6
    基于OPENCV的SIFT特征提取与匹配算法。包含完整的从图像高斯金字塔、DOG、空间极值点提取、关键点描述、KDtree匹配等关键步骤的全部函数实现,对全面深入理解Lowe的SIFT算法有莫大帮助。程序运行前须安装(1)OpenCV: http://opencvlibrary.sourceforge.net (2)SIFT: http://web.engr.oregonstate.edu/~hess/index.html,并配置其环境参数。(OPENCV the SIFT-based feature extraction and matching algorithm. Contains a complete Gaussian pyramid from the image, DOG, space extremum point extraction, description of key points, KDtree matching key step in the realization of the full function of the comprehensive and in-depth understanding of Lowe s SIFT algorithm of tremendous help. Program to run before the installation of (1) OpenCV: http://opencvlibrary.sourceforge.net (2) SIFT: http://web.engr.oregonstate.edu/ ~ hess/index.html, and configure the parameters of their environment.)
    2020-06-26 03:00:02下载
    积分:1
  • watershed
    利用形态学分水岭算法对图像进行分割,对细胞图像能达到较好的分割效果(Using morphological watershed algorithm for image segmentation, the cell image segmentation can achieve better results)
    2021-01-28 20:28:35下载
    积分:1
  • xiangweixiangguan
    关于相位相关的算法,用于配准,有些可以达到亚像素(on phase correlation algorithm for registration, and some can reach sub-pixel)
    2016-05-11 18:07:17下载
    积分:1
  • 696518资源总数
  • 105540会员总数
  • 37今日下载