登录
首页 » matlab » sicktoolbox

sicktoolbox

于 2020-11-29 发布 文件大小:1447KB
0 244
下载积分: 1 下载次数: 2

代码说明:

说明:  提供激光雷达点云数据的读取,滤波及分类功能(LIDAR point cloud data available to read, filter and sorting functions)

文件列表:

sicktoolbox-1.0\sicktoolbox-1.0\acinclude.m4
sicktoolbox-1.0\sicktoolbox-1.0\aclocal.m4
sicktoolbox-1.0\sicktoolbox-1.0\aminclude.am
sicktoolbox-1.0\sicktoolbox-1.0\AUTHORS
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\base\src\SickBufferMonitor.hh
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\base\src\SickConfig.hh
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\base\src\SickConfig.hh.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\base\src\SickException.hh
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\base\src\SickLIDAR.hh
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\base\src\SickMessage.hh
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\ld\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\ld\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\ld\sickld-1.0\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\ld\sickld-1.0\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\ld\sickld-1.0\SickLD.cc
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\ld\sickld-1.0\SickLD.hh
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\ld\sickld-1.0\SickLDBufferMonitor.cc
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\ld\sickld-1.0\SickLDBufferMonitor.hh
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\ld\sickld-1.0\SickLDMessage.cc
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\ld\sickld-1.0\SickLDMessage.hh
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\ld\sickld-1.0\SickLDUtility.hh
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\lms\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\lms\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\lms\sicklms-1.0\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\lms\sicklms-1.0\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\lms\sicklms-1.0\SickLMS.cc
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\lms\sicklms-1.0\SickLMS.hh
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\lms\sicklms-1.0\SickLMSBufferMonitor.cc
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\lms\sicklms-1.0\SickLMSBufferMonitor.hh
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\lms\sicklms-1.0\SickLMSMessage.cc
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\lms\sicklms-1.0\SickLMSMessage.hh
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\lms\sicklms-1.0\SickLMSUtility.hh
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\drivers\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_config\conf\sickld.conf
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_config\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_config\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_config\src\ConfigFile.cpp
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_config\src\ConfigFile.h
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_config\src\main.cc
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_config\src\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_config\src\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_more_config\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_more_config\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_more_config\src\main.cc
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_more_config\src\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_more_config\src\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_multi_sector\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_multi_sector\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_multi_sector\src\main.cc
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_multi_sector\src\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_multi_sector\src\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_single_sector\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_single_sector\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_single_sector\src\main.cc
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_single_sector\src\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\ld_single_sector\src\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\ld\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_config\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_config\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_config\README
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_config\src\main.cc
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_config\src\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_config\src\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_mean_values\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_mean_values\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_mean_values\README
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_mean_values\src\main.cc
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_mean_values\src\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_mean_values\src\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_partial_scan\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_partial_scan\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_partial_scan\README
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_partial_scan\src\main.cc
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_partial_scan\src\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_partial_scan\src\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_plot_values\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_plot_values\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_plot_values\src\gnuplot_i.cc
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_plot_values\src\gnuplot_i.hpp
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_plot_values\src\main.cc
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_plot_values\src\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_plot_values\src\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_real_time_indices\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_real_time_indices\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_real_time_indices\README
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_real_time_indices\src\main.cc
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_real_time_indices\src\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_real_time_indices\src\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_set_variant\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_set_variant\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_set_variant\README
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_set_variant\src\main.cc
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_set_variant\src\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_set_variant\src\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_simple_app\Makefile.am
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_simple_app\Makefile.in
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_simple_app\README
sicktoolbox-1.0\sicktoolbox-1.0\c%2B%2B\examples\lms\lms_simple_app\src\main.cc

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • HDevelop
    基于HDevelop的形状匹配算法参数的优化研究(The shape matching algorithm based on HDevelop Parameter Optimization)
    2010-02-02 00:23:52下载
    积分:1
  • FAST-ICA
    1、对观测数据进行中心化,; 2、使它的均值为0,对数据进行白化—>Z; 3、选择需要估计的分量的个数m,设置迭代次数p<-1 4、选择一个初始权矢量(随机的W,使其维数为Z的行向量个数); 5、利用迭代W(i,p)=mean(z(i,:).*(tanh((temp) *z)))-(mean(1-(tanh((temp)) *z).^2)).*temp(i,1)来学习W (这个公式是用来逼近负熵的) 6、用对称正交法处理下W 7、归一化W(:,p)=W(:,p)/norm(W(:,p)) 8、若W不收敛,返回第5步 9、令p=p+1,若p小于等于m,返回第4步 剩下的应该都能看懂了 基本就是基于负熵最大的快速独立分量分析算法(1, on the center of the observation data, 2, making a mean of 0, the data to whitening-> Z 3, select the number of components to be estimated m, setting the number of iterations p < -1 4, select an initial weight vector (random W, so that the Z dimension of the row vectors of numbers) 5, the use of iteration W (i, p) = mean (z (i, :).* (tanh ((temp) ' * z)))- (mean (1- (tanh ((temp)) ' * z). ^ 2)).* temp (i, 1) to learn W (This formula is used to approximate the negative entropy) 6 with symmetric orthogonal treatments W 7, normalized W (:, p) = W (:, p)/norm (W (:, p)) 8, if W does not converge, return to step 5 9 , so that p = p+1, if p less than or equal m, return to step 4 should be able to read the rest of the basic is based on negative entropy of the largest fast independent component analysis algorithm)
    2013-06-27 15:39:00下载
    积分:1
  • IPLib2.0
    一套基于VC++的遥感影象处理系统,可以实现空间域,频率域以及光谱的处理(yi tao ji yu VC++ de yaohan yingxiang chuli xitong)
    2021-01-05 09:48:54下载
    积分:1
  • surf
    surf算法对图像的配准实时的取证,经本人验证,该程序好用无误,可放心使用(surf algorithm for image registration in real time forensics, after I verify that the correct program easy to use, ease of use)
    2013-05-26 17:41:37下载
    积分:1
  • shendutuxiang
    深度图像处理,主要的是对深度图像进行区域分割(depth map)
    2010-06-04 21:07:41下载
    积分:1
  • retmp
    基于象素的图像配准程序,要配准的两幅图像,通过多对对控制点来配对(Pixel-based image registration procedures are based on the registration of two images, through a multi-right right control point to the matching)
    2008-05-16 18:02:43下载
    积分:1
  • two-dimensional-s-transform
    包含二维广义S变换程序和测试程序,用于对图像进行时频分析。matlab版本R2011b,操作系统为32位win7。在2G内存下最大只能对84*84的图像进行处理,更大的图像会出现out of memory的问题。目前网上还没有这个程序,包括本站,pudn,ilovematlab都没有。把程序上传到这三个地方,望大家一起来改进它。(Contains a two-dimensional generalized S transform procedure and testing procedure.It is used for the time-frequency analysis of images.Matlab version :R2011b, operating system: 32 win7. Tests under 2G memory can only process 84* 84 images.A larger image will incur "out of memory" problems. This program is not found online before, including this site, CSDN, ilovematlab. Upload the program to the above three websites, hoping it improved by the help of everyone.)
    2013-03-19 09:46:37下载
    积分:1
  • envelopeanalysismatlab-master
    说明:  次文件夹包含两个程序,可以对振动信号进行包络分析,适合信号处理入门的朋友(do envelope analysis on vibration signal)
    2020-05-13 19:20:08下载
    积分:1
  • lyc_sst_season
    说明:  基于MATLAB对逐日海表面温度遥感数据做月平均,并按照季节绘制多子图。(Based on MATLAB, monthly average of daily sst remote sensing data is done, and multiple subgraphs are drawn according to seasons.)
    2021-03-02 11:08:02下载
    积分:1
  • yasuo
    分割点云,并通过局部拟合求取法向量,实现点云压缩(Split point cloud, and through local fitting strike normal vector of point cloud compression)
    2020-06-30 09:00:01下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载