登录
首页 » matlab » bound2im

bound2im

于 2011-04-11 发布 文件大小:1KB
0 64
下载积分: 1 下载次数: 10

代码说明:

  .m file for matlab called bound2im

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • matlab-distrib-1
    matlab code using in mathematical optimization
    2010-10-25 16:09:18下载
    积分:1
  • LineRANSAC
    实现利用RANSAC方法对输入图像的线特征检测的功能。(RANSAC method to achieve the input image using the line feature detection function.)
    2011-01-15 19:24:29下载
    积分:1
  • AHP
    层次分析方法,用于有多个方案和多个准则的情况下,选择出其中的最优方案(AHP, for there are more programs and a number of criteria in the case, choose the optimal solution which)
    2011-07-18 13:47:23下载
    积分:1
  • Stochastic-Lab
    stochastic lab matlab code such as guassian process
    2015-01-19 17:15:35下载
    积分:1
  • 含有噪声的飞行轨迹及数据处理
    说明:  用于生成带噪声的无人机飞行轨迹,同时通过中值和小波滤波方式进行噪声去除(It is used to generate the flight path of UAV with noise and remove the noise by means of median and wavelet filtering)
    2020-01-13 15:15:37下载
    积分:1
  • solarpanel
    modeling and simulation of photovoltaic systems with matlab simulink
    2011-03-31 05:15:19下载
    积分:1
  • untitled0
    一个简单实用的二阶多智能体系统一致性的simulink仿真框图,可以进行修改,做实验等等(A simple and practical second-order multi-agent system consistency simulink simulation block diagram can be modified to do experiments, etc.)
    2013-01-27 18:40:49下载
    积分:1
  • monteCarloOptimLeverage
    monte carlo optimal leverage calculation algorithm in matlab on audcad fx currency pair
    2014-09-12 00:14:27下载
    积分:1
  • Iterative-Algorithms--
    本论文从CT图像重建原理入手, 根据迭代重建的物理意义, 从投影模型出发, 得到投影数据, 然后利用迭代算法MART 及SIRT 重建出断层图像, 再与模型相比较, 从而确定各算法的优劣, 总结出如何选择合适的图像重建算法。(Iterative Algorithms in Computed Tomographic Reconstruction)
    2015-12-02 16:48:58下载
    积分:1
  • RBF为径向基函数,RBF网络把网络看作对未知函数的逼近器
    说明:  RBF为径向基函数,RBF网络把网络看作对未知函数的逼近器。输入信号为正弦信号u(k)=0.35sin(3*pi*t),采用时间为0.001s,网络隐层神经元个数取m=4,网络结构为输入层2-隐层4-输出1,网络的出事全职取随机值,高斯函数的初始值取Cj=[0.65,0.65]T,B=[1.35,1.35,1.35,1.35]T,网络的学习参数取a=0.07,n=0.9。(RBF is a radial basis function, and RBF network regards the network as an approximator to the unknown function. The input signal is sinusoidal signal u(k)=0.35 sin(3*pi*t), the time is 0.001s, the number of hidden layer neurons is m=4, the network structure is input layer 2-hidden layer 4-output 1, the network accident takes random value full-time, the initial value of Gauss function takes Cj=[0.65, 0.65] T, B=[1.35, 1.35] T, the learning parameters of the network take a=0.07, n=0.9.)
    2019-01-06 19:55:58下载
    积分:1
  • 696518资源总数
  • 105717会员总数
  • 10今日下载