登录
首页 » matlab » work

work

于 2009-09-28 发布 文件大小:7262KB
0 168
下载积分: 1 下载次数: 747

代码说明:

  读取avi视频,并进行帧间差分法运算,检测运动目标(Read the avi video, and make inter-frame difference method for computing, moving target detection)

文件列表:

readavi.asv
readavi.m
v4.avi

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • WPF中显示GIF片:自定义GifImage控件
    【实例简介】
    2021-08-11 00:30:59下载
    积分:1
  • cpmpressive
    一种图像处理超分辨率重构方法,主要是利用图像稀疏表示的方法进行图像重构(Super-resolution reconstruction of an image processing method, mainly using sparse representation of image reconstruction methods for image)
    2011-08-11 10:52:01下载
    积分:1
  • ImageProcess
    实现bmp图像读入和写出,彩色图像灰度化,直方图均衡化(Implement bmp image read and write, color image graying, histogram equalization)
    2015-11-02 19:26:29下载
    积分:1
  • matlab
    利用MATLAB对图像边界内部的部分进行填充,以便后期对图像处理(Using MATLAB within the boundaries of the part of the image to fill, so that the latter part of the image processing)
    2013-09-11 23:28:07下载
    积分:1
  • 双峰法阈值分割
    说明:  双峰法阈值分割。阈值分割法是一种基于区域的图像分割技术,原理是把图像象素点分为若干类。图像阈值化分割是一种传统的最常用的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。它特别适用于目标和背景占据不同灰度级范围的图像。它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。图像阈值化的目的是要按照灰度级,对像素集合进行一个划分,得到的每个子集形成一个与现实景物相对应的区域,各个区域内部具有一致的属性,而相邻区域不具有这种一致属性。这样的划分可以通过从灰度级出发选取一个或多个阈值来实现。(Threshold segmentation)
    2018-03-29 09:29:03下载
    积分:1
  • C# 给片添加水印 片类型转换 例子
    C# 给图片添加水印 图片类型转换 例子
    2014-11-05下载
    积分:1
  • centroid
    已知一图像的轮廓,计算该轮廓质心,并标注在图上(A known the outline of image, the contour centroid calculation, and marked on the map )
    2012-04-11 16:38:08下载
    积分:1
  • minimum-watershed
    实现粘连分割,对有粘连的物体分割效果很好,使用了局部极值结合分水岭算法(Achieve adhesion segmentation, to have adhesion object segmentation effect is very good, the use of the local extremum combined with watershed algorithm )
    2012-08-26 16:22:23下载
    积分:1
  • 史上最快人脸检测系统(超越OpenCV)
    史上最快人脸检测系统(超越OpenCV)
    2019-03-19下载
    积分:1
  • PG_BOW_DEMO
    图像的特征用到了Dense Sift,通过Bag of Words词袋模型进行描述,当然一般来说是用训练集的来构建词典,因为我们还没有测试集呢。虽然测试集是你拿来测试的,但是实际应用中谁知道测试的图片是啥,所以构建BoW词典我这里也只用训练集。 其实BoW的思想很简单,虽然很多人也问过我,但是只要理解了如何构建词典以及如何将图像映射到词典维上去就行了,面试中也经常问到我这个问题,不知道你们都怎么用生动形象的语言来描述这个问题? 用BoW描述完图像之后,指的是将训练集以及测试集的图像都用BoW模型描述了,就可以用SVM训练分类模型进行分类了。 在这里除了用SVM的RBF核,还自己定义了一种核: histogram intersection kernel,直方图正交核。因为很多论文说这个核好,并且实验结果很显然。能从理论上证明一下么?通过自定义核也可以了解怎么使用自定义核来用SVM进行分类。(Image features used in a Dense Sift, by the Bag of Words bag model to describe the word, of course, the training set is generally used to build the dictionary, because we do not test set. Although the test set is used as the test you, but who knows the practical application of the test image is valid, so I am here to build BoW dictionary only the training set. In fact, BoW idea is very simple, although many people have asked me, but as long as you understand how to build a dictionary and how to image map to the dictionary D up on the line, and interviews are often asked me this question, do not know you all how to use vivid language to describe this problem? After complete description of the image with BoW, refers to the training set and test set of images are described with the BoW model, the training of SVM classification model can be classified. Apart from having to use the RBF kernel SVM, but also their own definition of a nuclear: histogram intersection kernel, histogram )
    2011-11-01 17:01:09下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载