登录
首页 » matlab » Digital_Signal_and_Image_Processing_Using_MATLAB_

Digital_Signal_and_Image_Processing_Using_MATLAB_

于 2011-05-05 发布 文件大小:4784KB
0 178
下载积分: 1 下载次数: 3

代码说明:

  Digital Signal and Image Processing Using MATLAB

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Interrupt
    很全的中断手册。 INT 00 - CPU-generated - DIVIDE ERROR INT 01 - CPU-generated - SINGLE STEP (80386+) - DEBUGGING EXCEPTIONS INT 02 - external hardware - NON-MASKABLE INTERRUPT INT 03 - CPU-generated - BREAKPOINT INT 04 - CPU-generated - INTO DETECTED OVERFLOW INT 05 - PRINT SCREEN CPU-generated (80186+) - BOUND RANGE EXCEEDED INT 06 - CPU-generated (80286+) - INVALID OPCODE INT 07 - CPU-generated (80286+) - PROCESSOR EXTENSION NOT AVAILABLE INT 08 - IRQ0 - SYSTEM TIMER CPU-generated (80286+) . . .(Very wide manual interruption. INT 00- CPU-generated- DIVIDE ERRORINT 01- CPU-generated- SINGLE STEP (80386+)- DEBUGGING EXCEPTIONSINT 02- external hardware- NON-MASKABLE INTERRUPTINT 03- CPU-generated- BREAKPOINTINT 04- CPU-generated- INTO DETECTED OVERFLOWINT 05- PRINT SCREEN CPU-generated (80186+)- BOUND RANGE EXCEEDEDINT 06- CPU-generated (80286+)- INVALID OPCODEINT 07- CPU-generated (80286+)- PROCESSOR EXTENSION NOT AVAILABLEINT 08- IRQ0- SYSTEM TIMER CPU-generated ( 802862B !)...)
    2007-10-16 02:10:59下载
    积分:1
  • VCMatlab
    VC++与Matlab混合编程实现图像处理(VC and Matlab Image Processing Mixed Programming)
    2009-10-10 12:43:09下载
    积分:1
  • lpcaudcom
    audio signals coding using lpc
    2010-09-18 17:00:52下载
    积分:1
  • siftDemoV4
    Scale Invariant Feature transform ( SIFT)-- this code implements the SIFT algorithm which extracts features invariant to Scale, Rotation and translation from any image.
    2011-04-29 20:18:10下载
    积分:1
  • FFTandIFFT
    利用matlab进行FFT和IFFT计算线性卷积,并得到其曲线(Using matlab FFT and IFFT calculations for linear convolution, and get the curve)
    2011-07-08 22:21:32下载
    积分:1
  • lorenz_chonggou
    这是一个完整的混沌理论中的相空间重构的程序,重构的是蝴蝶效应的了洛伦兹吸引子,压缩包里面有3部分程序,一个是数据,一个是主程序,一个是子程序。(This is a complete chaos theory of phase space reconstruction program, reconstruction of the butterfly effect of the Lorenz attractor, the archive there are three parts of the program, one for data, one main, one child program.)
    2021-02-22 13:59:41下载
    积分:1
  • aproxAntenas_bessel_simpson
    Aproximaciones de Bessel y Simpson
    2009-05-22 01:31:55下载
    积分:1
  • wavelet
    采用小波包算法进行压缩,小波树的确定则是根据不同的信息论准则,以达到分解系数表达的信息密度最高(Algorithm using wavelet packet compression, wavelet tree to determine if information theory is based on different criteria to achieve the decomposition coefficient expressed the highest density of information)
    2011-05-27 22:03:05下载
    积分:1
  • ARMAX
    根据输入输出数据,进行ARMA定阶、辨识,可用于SISO的最小方差控制系统性能评价(According to the input and output data, ARMA order determination, identification, control systems can be used to minimize the variance of performance uation SISO)
    2015-01-09 12:16:51下载
    积分:1
  • Reversible_Jump_MCMC_Bayesian_Model_Selection
    This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. The derivations and proof of geometric convergence are presented, in detail, in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Robust Full Bayesian Learning for Neural Networks. Technical report CUED/F-INFENG/TR 343, Cambridge University Department of Engineering, May 1999. After downloading the file, type "tar -xf rjMCMC.tar" to uncompress it. This creates the directory rjMCMC containing the required m files. Go to this directory, load matlab5 and type "rjdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters. (This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. The derivations and proof of geometric convergence are presented, in detail, in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Robust Full Bayesian Learning for Neural Networks. Technical report CUED/F-INFENG/TR 343, Cambridge University Department of Engineering, May 1999. After downloading the file, type "tar-xf rjMCMC.tar" to uncompress it. This creates the directory rjMCMC containing the required m files. Go to this directory, load matlab5 and type "rjdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters. )
    2008-03-07 23:23:12下载
    积分:1
  • 696516资源总数
  • 106409会员总数
  • 8今日下载