登录
首页 » Windows_Unix » binary_ga

binary_ga

于 2012-04-30 发布 文件大小:2KB
0 192
下载积分: 1 下载次数: 5

代码说明:

  A simple binary Ga for optimization.

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • lifting_db97.m__html
    wireless sensor networks protocol
    2012-08-13 09:01:20下载
    积分:1
  • classifbayes
    classification bayse
    2015-03-09 19:59:05下载
    积分:1
  • DisparitymapSSDSADNCCaRMS-Error
    Disparity Map computation by Local correspondence search SAD, SSD and NCC. RMS error between the groundtruth and computed disparity map.
    2015-03-09 15:13:47下载
    积分:1
  • AS
    说明:  solve a joint antenna selection and analog beamformer problem(jointly design the antenna selection and analog beamformer with low-resolution phase shifters in mmwave MIMO systems)
    2018-11-11 09:19:19下载
    积分:1
  • dxxzh
    说明:  大小写转换的MATLAB程序。希望对大家有帮助。(Sensitive procedures for the conversion of MATLAB. We want to help.)
    2009-08-04 21:51:42下载
    积分:1
  • zuiyou1
    说明:  matlab最优控制的作业 请各位高手多多指教(Matlab optimal control operations please master exhibitions)
    2006-03-13 12:48:56下载
    积分:1
  • mfiles
    北京航空航天大学matlab6.5版本教材的m文件集合(M file collection of the materials of Beijing University of Aeronautics and Astronautics matlab6.5 version)
    2012-10-03 23:57:28下载
    积分:1
  • Smart_Antenna_System
    Smart Antenna System souce code (Smart Antenna System souce code)
    2007-11-12 16:43:36下载
    积分:1
  • marcv
    说明:  利用ode45求解微分方程组。利用马尔可夫状态转移,求解系统部件随时间的可靠性函数。(Use matlab to solve system of differential equations.)
    2021-04-15 20:58:54下载
    积分:1
  • gender
    Photos with people (e.g., family, friends, celebrities, etc.) are the major interest of users. Thus, with the exponentially growing photos, large-scale content-based face image retrieval is an enabling technology for many emerging applications. In this work, we aim to utilize automatically detected human attributes that contain semantic cues of the face photos to improve contentbased face retrieval by constructing semantic codewords for efficient large-scale face retrieval. By leveraging human attributes in a scalable and systematic framework, we propose two orthogonal methods named attribute-enhanced sparse coding and attributeembedded inverted indexing to improve the face retrieval in the offline and online stages. We investigate the effectiveness of different attributes and vital factors essential for face retrieval. Experimenting on two public datasets, the results show that theproposed methods can achieve up to 43.5 relative improvement in MAP compared to the existing methods.
    2013-11-20 00:42:07下载
    积分:1
  • 696516资源总数
  • 106432会员总数
  • 11今日下载