-
数据处理结果可视化
MATLAB处理实验数据(MATLAB process experimental data )
- 2005-01-19 12:03:08下载
- 积分:1
-
A_User_Friendly_Fortran_BVP_Solver
一个用fortran90写成的BVP(ODE)的求解器,作者是写matlab函数bvp4c的作者。原理差不多。不过这个版本是用f90写的,运算速度更快。本包内含如何运这些程序的论文及算例,很好上手。(In the declarations part of this module, we first define the BVP_SOL type, which represents the numerical solution. We next define the interface BVP_INIT, which is overloaded to provide a number of functions for allowing the user to specify initial information for the computation, the interface BVP_EXTEND, which is overloaded to provide functions for extending the numerical solution to a new domain that are useful in the context of parameter continuation, and the interface BVP_EVAL, which is overloaded to provide a function for retrieving solution information. Next a number of global variables employed throughout the code are defined.
)
- 2010-11-08 02:14:08下载
- 积分:1
-
TrAdBoost
利用matlab编程实现TrAdaBoost算法(Matlab for TrAdaBoost algorithm.)
- 2021-04-01 23:19:07下载
- 积分:1
-
wireless
mimo-ofdm wssus channel
- 2013-05-22 22:29:57下载
- 积分:1
-
logdecoder
ldpc译码算法,采用LOG算法,减少计算复杂度(ldpc decoding algorithm used LOG algorithm, to reduce the computational complexity)
- 2007-02-05 14:39:20下载
- 积分:1
-
DFIG-master
含有风力发电的微电网系统仿真,通过控制策略进行功率合理分配(Research on Grid-connected microgrid and its control strategy simulation of microgrid system with wind power generation and reasonable power distribution through control strategy)
- 2019-07-11 16:48:28下载
- 积分:1
-
5-(2)
To support wireless communication : MIMO
- 2013-12-24 21:54:18下载
- 积分:1
-
doppler_files
说明: MIT 简易自制雷达多普勒信号分析代码
合成孔径雷达信号的DTI分析(MIT simple self-made radar Doppler signal analysis code)
- 2021-01-28 17:45:16下载
- 积分:1
-
matlab
动态系统仿真例子,使用matlab语言,四阶龙格-库塔发(Dynamic system simulation example, the use of matlab language, fourth-order Runge- Kutta-fat)
- 2008-05-14 22:08:11下载
- 积分:1
-
Elman神经网络预测电力负载
Elman神经网络建立建筑物电力负荷预测模型中遇到的几个关键问题有,数据归一化处理、输入输出样本的选取、隐含层节点数的确定;分别建立Elman神经网络模型,并利用某栋建筑物实际历史电力负载数据进行预测,分析比较与实际数据值的预测精度,得出了一个有效的数据预测模型。(Several key problems encountered in building power load forecasting model based on Elman neural network are data normalization, selection of input and output samples, and determination of the number of hidden layer nodes. Elman neural network models are established respectively, and the actual historical power load data of a building are used for forecasting. Effective data prediction model.)
- 2019-05-16 19:07:39下载
- 积分:1