登录
首页 » matlab » NNDemo2.0

NNDemo2.0

于 2010-07-14 发布 文件大小:1002KB
0 192
下载积分: 1 下载次数: 4

代码说明:

  神经网络的MATLAB实现程序,有界面,将bp网络的应用详细讲解(MATLAB neural network implementation procedures, interfaces, network applications will be explained in detail bp)

文件列表:

NNDemo2.0





.........\30.bmp,3126,2002-09-02
.........\40.bmp,3126,2002-09-02
.........\50.bmp,3126,2002-09-02
.........\60.bmp,3126,2002-09-02
.........\70.bmp,3126,2002-09-02
.........\80.bmp,3126,2002-09-02
.........\90.bmp,3126,2002-09-02
.........\@linear
.........\.......\char.m,54,2003-10-17
.........\.......\display.m,73,2003-10-17
.........\.......\evaluate.m,62,2003-10-17
.........\.......\linear.m,325,2003-10-17
.........\@rbf
.........\....\char.m,99,2003-10-17
.........\....\display.m,100,2003-10-17
.........\....\evaluate.c,2775,2000-09-17
.........\....\evaluate.dll,40960,2000-11-17
.........\....\evaluate.m,303,2003-10-17
.........\....\evaluate.mexlx,5496,2000-09-17
.........\....\evaluate.mexsol,15560,2000-12-13
.........\....\evaluate.o,11632,2000-12-13
.........\....\mexversion.o,2592,2000-12-13
.........\....\r.m,47,2003-10-17
.........\....\rbf.m,483,2003-10-17
.........\@smosvctutor
.........\............\Cache.h,2192,2000-09-17
.........\............\InfCache.cpp,2401,2000-09-17
.........\............\InfCache.h,2278,2000-09-17
.........\............\InfCache.o,19528,2000-12-13
.........\............\LrrCache.cpp,4387,2000-11-17
.........\............\LrrCache.h,2463,2000-11-17
.........\............\LrrCache.o,23108,2000-12-13
.........\............\Makefile,295,2000-11-19
.........\............\mexversion.o,2600,2000-12-13
.........\............\smosvctrain.cpp,4202,2000-09-17
.........\............\smosvctrain.dll,69704,2000-11-19
.........\............\smosvctrain.ilk,140868,2000-11-19
.........\............\smosvctrain.mexlx,52699,2000-09-17
.........\............\smosvctrain.mexsol,200948,2000-12-13
.........\............\smosvctrain.o,16424,2000-12-13
.........\............\smosvctrain.pdb,140288,2000-11-19
.........\............\smosvctutor.m,373,2003-10-17
.........\............\SmoTutor.cpp,10258,2000-11-17
.........\............\SmoTutor.h,2821,2000-09-17
.........\............\SmoTutor.o,31728,2000-12-13
.........\............\train.m,984,2003-10-17
.........\............\utils.hh,1486,2000-09-17
.........\............\vc60.pdb,53248,2000-11-19
.........\@svc
.........\....\.xialpha.m.swp,12288,2000-09-17
.........\....\compact.m,205,2003-10-17
.........\....\display.m,272,2003-10-17
.........\....\fixduplicates.m,378,2003-10-17
.........\....\fwd.m,142,2003-10-17
.........\....\getbias.m,60,2003-10-17
.........\....\getkernel.m,66,2003-10-17
.........\....\getnsv.m,58,2003-10-17
.........\....\getsv.m,48,2003-10-17
.........\....\getw.m,48,2003-10-17
.........\....\strip.m,186,2003-10-17
.........\....\svc.m,592,2003-10-17
.........\....\train.m,88,2003-10-17
.........\....\xialpha.m,364,2003-10-17
.........\@svctutor
.........\.........\svctutor.m,353,2003-10-17
.........\a10cities.bmp,480054,2002-07-18
.........\a20cities.bmp,480054,2002-07-18
.........\delt.m,1151,2003-10-11
.........\even_k.m,559,2002-09-26
.........\example21.m,1091,2002-10-23
.........\example21a.m,1147,2002-09-30
.........\example21index.m,3679,2003-10-09
.........\example21index000.m,3675,2010-01-08
.........\example21_figure.m,523,2002-10-23
.........\example21_test.m,100,2002-10-23
.........\example22.m,1107,2002-10-07
.........\example22a.m,1081,2002-10-23
.........\example22index.m,3338,2003-10-08
.........\example22_figure.m,530,2002-10-23
.........\example22_test.m,97,2002-10-23
.........\example23.m,1197,2002-10-23
.........\example23index.m,3384,2003-10-09
.........\example23_figure.m,684,2003-10-09
.........\example24.m,1102,2002-10-23
.........\example24a.m,1101,2002-10-23
.........\example24index.m,3006,2003-10-09
.........\example24_figure.m,545,2002-10-23
.........\example25.m,467,2002-10-23
.........\example25index.m,3368,2003-10-09
.........\example25_error.m,138,2002-10-23
.........\example25_test.m,81,2002-10-23
.........\example26.m,935,2003-10-09
.........\example26index.m,4373,2003-10-09
.........\example26_error.m,139,2002-10-23

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Matlabbiancheng
    说明:  matlab 编程资料下载,希望能帮到你们(Download matlab programming, hope to help you)
    2011-03-17 20:38:31下载
    积分:1
  • matlab-algorithm
    优化算法中的粒子群算法详解和Matlab程序代码(Optimization algorithm and particle swarm Detailed Matlab code)
    2014-08-10 09:47:43下载
    积分:1
  • spectrum_analysis
    高阶频谱分析工具(数字信号处理Matlab例程)(higher order spectral analysis tools (digital signal processing Matlab routines))
    2007-05-06 18:12:11下载
    积分:1
  • eg26-jizhixunyou
    《MATLAB神经网络30个案例分析》中的第26个例子,案例26 粒子群算法的寻优算法-非线性函数极值寻优。希望对大家有一定的帮助!(The MATLAB neural network analysis of 30 cases of 26 example, 26 cases of particle swarm algorithm optimization extreme - nonlinear function optimization algorithm. Hope to have certain help to everybody! have certain help to everybody! )
    2013-09-20 16:41:45下载
    积分:1
  • Sim_Fast_Tanner
    matlab to ise change code
    2013-09-30 13:18:21下载
    积分:1
  • smoke
    smoke detection wild fire
    2015-03-19 22:31:41下载
    积分:1
  • .rar
    说明:  针对差分进化( DE) 算法后期收敛速度变慢、收敛精度变低以及易陷入局部最优解的缺点,提出一种基于双种群自适应进化的改进差分进化算法。(To overcome the shortcomings of slow convergence speed, low convergence accuracy and easy to fall into local optimal solution of differential evolution (DE) algorithm, a new algorithm is proposed. An improved differential evolution algorithm for adaptive evolution of two populations.)
    2019-01-13 11:17:11下载
    积分:1
  • maybegoodSVPWM
    SVPWM仿真用simulink,基本出来了(svpwm)
    2010-01-19 22:12:35下载
    积分:1
  • OFDMcode
    说明:  一个完整很不错的OFDM程序,在给出OFDM系统模型的基础上,用MATLAB语言实现了整个系统的计算机仿真并给出参考设计程序(A complete OFDM is very good procedures in OFDM system model is given based on the MATLAB language with a computer simulation of the entire system and gives reference to the design process)
    2008-11-12 11:31:22下载
    积分:1
  • nlms
    we will be addressing the major concerns in telecommunication nowadays which are channel equalization and echo cancellation using different adaptive algorithms in order to identify the most efficient methodology. There are a number of conventional algorithms available in literature and every algorithm has its own properties, however the aim of every adaptive algorithm is to achieve minimum mean square error at a high rate of convergence and with less complexity. The experimental results prove that Normalized Least Mean Square algorithm (NLMS) is the best for channel equalization
    2012-03-25 19:17:28下载
    积分:1
  • 696516资源总数
  • 106454会员总数
  • 1今日下载