登录
首页 » Others » PFC2d

PFC2d

于 2020-11-15 发布 文件大小:2KB
0 183
下载积分: 1 下载次数: 35

代码说明:

  pfc2d按颗粒级配生成模型代码,直接打开程序就能运行,与大家共享(Pfc2d according to particle size distribution of the generated model code is generated by software to open the can directly to share with you )

文件列表:

PFC2d.txt,7334,2013-01-11

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 开发电子海图必需的s52显示库和说明(很全,自己开发的时候收集的)
    在电子海图显示软件的开发过程中使用,包括符号展示库等所有文档。自己开发的时候就是阅读这些文档的
    2020-12-04下载
    积分:1
  • 光伏模型(digsilent)
    基于digsilent的光伏模型,主要用于研究光伏并网,和光伏电站设计等问题。
    2021-05-06下载
    积分:1
  • 无迹粒子滤波的matlab实现
    基于无迹卡尔曼滤波ukf的粒子滤波matlab程序
    2020-11-27下载
    积分:1
  • 有关中国人口预测数学模型建立预测
    本文对中国中短期、长期的人口作了预测。第一,首先,作为已知的条件(输入)的统计数据都是离散的,如某某年各个年龄的女性生育率、死亡率、性别比等;第二,作为结果输出人们希望得到的数据也是离散的,例如:2010年、2020年、2050年…的人口总数、各个人口总数、人口的年龄分布等;第三,与其用数值的方法求解连续模型,不如直接建立离散模型,也就是所谓的双线型模型,本文就是利用双线型模型解决了问题。通过Matlab进行编程求解,我们得到未来中短期和长期的市区,城镇,乡村的各项人口指标及其各自的发展趋势。若控制总和生育率不超过1.8,则中国总人口将在2015到2020年达到最大值,约为14.5亿,之后开
    2020-12-09下载
    积分:1
  • 三电平逆变器SVPWM的SIMULINK仿真与建模流.rar
    压缩包内含有三电平你变器的完整模型,可直接运行,并配有文档说明和建模流程,供大家参考
    2020-12-12下载
    积分:1
  • 电机驱动上位机源代码
    用C#编写的直流无刷电机控制上位机源代码,active-semi ,PAC52xx
    2020-11-27下载
    积分:1
  • 基于混合遗传模拟退火算法求解TSP问题
    基于混合遗传模拟退火算法求解TSP问题
    2021-05-06下载
    积分:1
  • 北航矩阵论学习笔记
    北京航空航天大学矩阵理论学习笔记,总结版,学霸总结,可以放心下载使用北京航空航天大学张京蕊工程系统工程系月录§0补充公式§1 Jordan(约当)标准形(简介)§2线性变换与矩阵.24§3欧式空间与QR分解.48§4常用矩阵分解●鲁D●●·,,,,,74§5范数与级数.81§6广义逆A..97§7直积拉直及应用105矩阵理论A笔记北京航空航天大学张京蕊工程系统工程系§0补充公式令A=(a)mxn∈C",风x)=4o+a1x0定义f(4)=a0+a1A+…+amAm,其中I=l若g(x)=bo+b1x+…+bkx,(x)g(x)=g(x)(x),则f(4)“g(A)=g(A)f(A)分块公式A10令A,A1,A2为方阵00 A(2)f(A),fx)为多项式令A=,A1,4为方阵AO(2)f(4)相似关系:A∽B,(PAP=B)则:(1)(P1AP)=P!AP,(k=0,1,2,(2)f(PAP)=PfA)P,f(x)为多项式许尔公式( schur):每个复方阼,A-(a)nxm都相似丁上三角形。共113页矩阵理论A笔记第1页北京航空航天大学张京蕊工程系统工程系即:P-1AP=其中41,,的次序可以任意指定Pf:用归纳法n=1时成立可以设为(n=1阶方阵成立对于n阶方阵A=(an)2×n设特征值为A,…,n取为对应的特征向量,记为a1≠0,A1=1ax1把a1扩展为可逆方阵Q=(a1,02,xn)22e又:g(a,a,…,.)=(Qa,Qba2,,Qan)其中Qe1,aQ0Q4=QA(a1a2,…an)2-I(Aa,,AAQ=(Qa,、+)…,(*)其中A1为(n-1所阶0人:0 A为由假设,对于A1必有(n-1)阶P,可推出PAPEg知n阶方阵A,适合A=0,则A+|=1共113页矩阵理论A笔记第2页北京航空航天大学张京蕊工程系统工程系Pf:A=0→任意特征值A=0→>=0即全体特征值为00,,00由需要P1AP=→PAP+7=1pAP+PP|=P(4+1)P=14+1→A+1=-1注(1)若AB(相似),则AB有相同特征值A,可引入记号:谱集(4)={2,2,…,λ}(全体特征值,含重复)A∽B→o()=o(B)(2)A∽B→1-A=1-B-(2-4元一2)…(-n),特征多项式PAP=B=A-A=p(1-A)P=A-B引理:若A0A2,则M-A|-|M1-4|-1-A1|2-A2→ar(4)=o(A)∪a(42k+1,Ak-2,…n1f(x2)设B,f(x)为多项式,则f(B)=o f(,)引理:若n阶方阵A的谱集(4)=1,42,…},则)的全体特社值为)2,…,),x)为多项式Pf:由许尔定理,A∽B→f(4)∽f(B)f(x)的全体特征值为(A1)(42),,()},fx)为多项式例如:4为A的特征值→x为4的特征值。(x)=x)共113页矩阵理论A笔记第3页北京航空航天大学张京蕊工程系统工程系引理:令B,f(x)=x-B|=(x-41)(x-12)….(x-n)则fB)=(B-1D(B-21)…(B-A1D=0Pf:当n=2时,B=0x2f(x)=(x-1)(x-2)000→f(B)-(B-41)(B-21)(2-元)0(00∴得证★ Cayley公式:设n阶方阵A的特征多项式为f(x)=|x-A|=a+a1x+…,+x则f4)=anl+a14+…,+4=0Pf:由许尔PAP=B=→P(4)P=fp3P)=f(B)=0(引理)定义若多项式x)使(4)=0,则称(x)为A的个零化式结论方阵A的特征多项式)=1x1-4为A的一个零化式g特征多项式fx)=x2可知:f(A)=A2+1=+I=00-1Hx)=|xI-A|=(x-)(x+i,(i=√-1,t2=-1)f(A)=(A-i)(4+i1=0也可取P=则PPAP=,对角形共113页矩阵理论A笔记第4页北京航空航天大学张京蕊工程系统工程系g:知A则A"=0Onxn由 Cayley特征多项式:f(x)=x"→f(4)=4"=0Ex 1. A=求P使得PP为对角阵,并验证 Cayley定理2.A=cd/,求fx)=x1-4验证f4)-0补充知识( schur公式、 Cayley公式)应用由A"=-(a0I+a1A+1A·AanA+a142+…+a.,A把①代入②→Am1=(-)+(+)4+…+(+)41可知:任何和(m≥n)都可写成,4,,A的线性组合任何多项式g(A),可写成lA,…,4的组合。Fg:若A|≠0,fx)=xI-A|=a0+a1x+…+x",ao=|-A|≠则A可用A的多项式表示∵a1A+a242+…+an21A-+A"--a072A(a1+a24+…+an-142+A)Aa1+…+an1A"2+A-1零化式定义:若g(x)=b+b1x+…+bnx,使得g(4)=bn+b14+…+bn4m=0,称g(x)为方阵A的零化式注:方阵A的零化式有无穷多个∴取特征多项式x)则4)=0任取式M(x),f(A(4)=0→f(x)(x)也是零化式极小式定义:在方阵A的零化式集合中,去次数最小的且首项系数为1的零化式m(x),称它为A的极小式共113页矩阵理论A笔记第5页北京航空航天大学张京蕊工程系统工程系注:极小式唯一性质:①极小式m(x)必为特征多项式fx)=|xI-A的因式。②特征多项式fx)=|x1-A的每个单因子(x-4)也是极小式的因子)f(x)=|x1-4=(x-x)(x-2)则极小式m(x)=(x-x)(x-2)y…(x-,),且1≤l1≤m1,1≤l2≤m2,…,1≤l≤n,41,A2…,n互不相同210EgA=020,B=020,求极小式mA(),m()解:(1)|xI-A|=(x-2)(x-1)极小式为:(x-2)(x-1)或(x-2)(x-1)计算:(4-2/)4-1)=000010k≠000000∴极小式为m4(x)=(x-2)2(x-1)(2)|-B|-=(x-2)2(x-1)00000计算:(B-2)B-1)=000010=000-1八000∴极小式为m(x)=(x-2)(x-1)Eg求下列极小式m(x)4604-60(1)A=-3-50,(2)B=2-303-6100210(3)C,(4)D=000010002000解:(1)特征多项式|x7-A|-(x-1)(x+2)极小式为:(x-1)(x+2)或(x-1)(x+2)共113页矩阵理论A笔记第6页北京航空航天大学张京蕊工程系统工程系验证:(4-D(A+2D=0∴极小式为m(x)-(x-1)(x+2)(3)解法如下引理:A1,A2的极小式为m1(x),m2(x)A10的极小式m(x)等丁m1(x),m2(x)的最小公倍式0A2(此引力可推广到A1,42,43)0100极小式为(x-1)2,0010极小式为(x-1)0取最小公倍式(x-1)2为C的极小式。460(5)F-/40,A1=020|,A00 A0123-6101O引理;设D=,则D的极小式m(x)O验证:先证D的性质(右推公式)设A-(an)xn=(a1,2,…,n)则有AD=(0,01,a2,,.m1)AD2=(0,0,∞1,,x12)AD=(0,….0.,a1,,axn)单位向量技巧:∵AI=A(en,e2…,en)=(el,leAen)=A=(a1, a2,. a,)∴Ae1=01,Ae2=(2,.,A→AD=A(0,e1,e2,…,en-1)=(0,a1,a2…,an-)同理AD2=(AD)D=(0,.01,.12)可知:D-1-(D)Dy2-(0.,0,,e1)≠0D"=(D)D1=0,而特征多项式(x)=|x1-D|=x,极小式为某个x共113页矩阵理论A笔记第7页
    2020-12-09下载
    积分:1
  • bp神经网络 simulink
    【实例简介】bp神经网络 simulink 计算机控制与仿真 预测 matlab bp
    2021-11-01 00:31:23下载
    积分:1
  • 改进型的最大最小蚁群算法求解云计算虚拟机初始化放置问题
    参考任田田的硕士论文《云数据中心中虚拟机初始化放置策略的优化算法及其应用研究》,用MATLAB语言实现了基于改进的最大最小蚁群算法求解云计算虚拟机初始化放置问题,采用的首次适应策略,轮询策略需要进一步测试。
    2020-12-11下载
    积分:1
  • 696518资源总数
  • 106164会员总数
  • 18今日下载