登录
首页 » matlab » SVM-matlab

SVM-matlab

于 2013-11-17 发布 文件大小:3846KB
0 140
下载积分: 1 下载次数: 39

代码说明:

  经典SVM算法matlab程序,用于多种利用MATLAB对数据进行SVM仿真的实验。(Classical SVM algorithm matlab program for a variety of SVM data using MATLAB simulation experiments.)

文件列表:

经典SVM算法matlab程序
.....................\svm
.....................\...\binomial.m,371,1997-09-19
.....................\...\centrefig.m,144,1998-05-01
.....................\...\cmap.mat,1728,1997-08-13
.....................\...\Contents.m,1105,1998-08-07
.....................\...\Examples
.....................\...\........\Classification
.....................\...\........\..............\iris1v23.mat,2696,1997-09-28
.....................\...\........\..............\iris2v13.mat,2696,1997-09-28
.....................\...\........\..............\iris3v12.mat,2696,1997-09-28
.....................\...\........\..............\linsep.mat,672,1997-11-06
.....................\...\........\..............\nlinsep.mat,712,1997-11-06
.....................\...\........\Regression
.....................\...\........\..........\example.mat,744,1997-11-07
.....................\...\........\..........\sinc.mat,1056,1997-08-20
.....................\...\........\..........\titanium.mat,1096,1997-09-27
.....................\...\newsvm.zip,76534,2001-10-26
.....................\...\nobias.m,457,1998-08-06
.....................\...\Optimiser
.....................\...\.........\Makefile,27,2001-10-11
.....................\...\.........\pr_loqo.c,16731,2001-10-11
.....................\...\.........\pr_loqo.h,2388,2001-10-11
.....................\...\.........\qp.c,7245,2001-10-11
.....................\...\.........\qp.dll,49152,2001-10-26
.....................\...\qp.dll,49152,2001-10-26
.....................\...\htm" target=_blank>README,2642,2001-10-12
.....................\...\softmargin.m,312,1998-04-21
.....................\...\svc.m,2687,1998-08-21
.....................\...\svcerror.m,837,1998-08-21
.....................\...\svcinfo.m,1228,1998-03-10
.....................\...\svcoutput.m,973,1998-04-21
.....................\...\svcplot.m,3109,2001-10-12
.....................\...\svdatanorm.m,1299,1998-06-23
.....................\...\svkernel.m,2608,2001-10-11
.....................\...\svr.m,3982,1998-08-21
.....................\...\svrerror.m,1203,1998-08-21
.....................\...\svroutput.m,711,1998-04-15
.....................\...\svrplot.m,1823,1998-02-13
.....................\...\svtol.m,401,1998-08-21
.....................\...\uiclass.m,5386,1997-11-18
.....................\...\uiclass.mat,12592,1997-11-18
.....................\...\uiregress.m,5627,1997-09-27
.....................\...\uiregress.mat,11640,1998-10-12
.....................\SVM_luzhenbo
.....................\............\Classification_stprtool.m,2351,2007-03-15
.....................\............\Classification_SVM_SteveGunn.m,1542,2007-03-15
.....................\............\codelssvm.m,4125,2003-02-21
.....................\............\initlssvm.m,4042,2003-02-21
.....................\............\kernel_matrix.m,2182,2003-02-21
.....................\............\lssvmMATLAB.m,3534,2003-02-21
.....................\............\LS_SVMlab
.....................\............\.........\AFE.m,2738,2003-02-21
.....................\............\.........\bay_errorbar.m,5785,2003-02-21
.....................\............\.........\bay_initlssvm.m,2003,2003-02-21
.....................\............\.........\bay_lssvm.m,10345,2003-02-21
.....................\............\.........\bay_lssvmARD.m,8187,2003-02-21
.....................\............\.........\bay_modoutClass.m,9358,2003-02-21
.....................\............\.........\bay_optimize.m,5977,2003-02-21
.....................\............\.........\bay_rr.m,4178,2003-02-21
.....................\............\.........\buffer.mc,164,2005-04-15
.....................\............\.........\changelssvm.m,5632,2003-02-21
.....................\............\.........\Classifacation_fourfaults.m,2897,2009-02-24
.....................\............\.........\Classification_fourfaults_4000_6000.m,4697,2009-03-02
.....................\............\.........\Classification_LS_SVMlab.m,2618,2009-05-15
.....................\............\.........\code.m,4245,2005-04-15
.....................\............\.........\codedist_bay.m,2118,2003-02-21
.....................\............\.........\codedist_hamming.m,756,2003-02-21
.....................\............\.........\codedist_loss.m,2018,2003-02-21
.....................\............\.........\codelssvm.m,4125,2003-02-21
.....................\............\.........\code_ECOC.m,5197,2003-02-21
.....................\............\.........\code_MOC.m,550,2003-02-21
.....................\............\.........\code_OneVsAll.m,364,2003-02-21
.....................\............\.........\code_OneVsOne.m,555,2003-02-21
.....................\............\.........\Contents.m,32,2003-03-20
.....................\............\.........\crossvalidate.m,8174,2003-02-21
.....................\............\.........\deltablssvm.m,1886,2003-02-21
.....................\............\.........\democlass.m,3369,2003-02-21
.....................\............\.........\demofun.m,3864,2003-02-21
.....................\............\.........\demomodel.m,4748,2005-09-13
.....................\............\.........\demo_fixedclass.m,2259,2003-03-11
.....................\............\.........\demo_fixedsize.m,3099,2003-02-21
.....................\............\.........\demo_yinyang.m,3337,2003-02-21
.....................\............\.........\denoise_kpca.m,3507,2003-02-21
.....................\............\.........\eign.m,3414,2003-02-21
.....................\............\.........\gridsearch.m,6927,2003-02-21
.....................\............\.........\initlssvm.m,4042,2003-02-21
.....................\............\.........\kentropy.m,2206,2003-02-21
.....................\............\.........\kernel_matrix.m,2182,2003-02-21
.....................\............\.........\kpca.m,4833,2003-02-21
.....................\............\.........\latentlssvm.m,2398,2003-02-21
.....................\............\.........\leaveoneout.m,5510,2003-02-21
.....................\............\.........\leaveoneout_lssvm.m,5215,2003-02-21
.....................\............\.........\linesearch.m,3758,2003-02-21
.....................\............\.........\linf.m,313,2003-02-21
.....................\............\.........\lin_kernel.m,516,2003-02-21
.....................\............\.........\LS-SVMlab Toolbox User's Guide.pdf,849975,2003-03-10
.....................\............\.........\lssvm.dll,22528,2003-02-21
.....................\............\.........\lssvm1024.dll,22528,2003-02-21
.....................\............\.........\lssvm256.dll,22528,2003-02-21

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • sample4
    Welch法得到的功率谱估计。 设计滤波器对白噪声滤波后的功率谱。(Welch method of power spectrum estimation. Design filters with the noise power spectrum after filtering.)
    2009-02-04 23:11:47下载
    积分:1
  • timeserils
    说明:  时间序列工具箱可以解决很多时间序列预测问题,大家可以试一试的。用过的,真的很好。(Time series toolbox can solve a lot of time series prediction problem, we can try to. Used, really good.)
    2010-04-15 13:23:30下载
    积分:1
  • Matlab-Hemmat-Abadi-
    computer in engineering in farsi
    2012-09-01 04:24:36下载
    积分:1
  • Kalman
    捷联惯导初始对准Kalman滤程序,非常难得的代码源程序。(SINS initial alignment Kalman filter program, source code is very rare.)
    2011-12-26 18:47:21下载
    积分:1
  • ybus
    computation of ybus in ieee 39 bus
    2011-06-18 00:52:47下载
    积分:1
  • Charging_Capacitor_exp_108b
    Practical matlab experiment for charging a capacitor
    2013-10-04 14:55:09下载
    积分:1
  • tuxiangmangyuan
    主要应用Matlab来实现图像的盲源分离而且是三个图像的处理问题采用的方法是FastICA算法(The main application of Matlab to achieve blind source separation method for processing an image problem and is three images FastICA algorithm is used)
    2015-05-21 18:16:21下载
    积分:1
  • softmax
    说明:  MNIST手势识别数据库进行softmax回归分类,直接运行softmaxExercise.m文件即可运行。(The MNIST gesture recognition database is classified by soft Max regression and can be run directly by running the softmaxExercise. m file.)
    2019-05-18 15:31:21下载
    积分:1
  • Gauss
    复化的Gauss-legendre公式,自己写的,还有推导过程(Re-oriented Gauss-legendre formula, wrote it myself, as well as derivation)
    2010-01-03 14:41:55下载
    积分:1
  • 11123_2
    比较NLMS、基于分块的LMS和基于符号的LMS三种算法,并且实现信道均衡(More NLMS, based on the LMS and block LMS three algorithms based on symbols, and to achieve channel equalization)
    2011-07-16 10:43:54下载
    积分:1
  • 696518资源总数
  • 105133会员总数
  • 27今日下载