-
guijiyuce
说明: 通过BP神经网络实现对导弹运动轨迹的预测(Prediction of missile trajectory by BP neural network)
- 2020-08-08 11:24:14下载
- 积分:1
-
gpsCalculate
包含三个M文件,其中ReadGpsData.m是读取导航文件,TimetoJD.m是将民用年历转换为儒略日,CalPos.m是将读取的数据计算卫星的坐标。
此程序计算结果较好。
(M consists of three documents, which is read ReadGpsData.m document navigation, TimetoJD.m is converted to civilian Julian calendar date, CalPos.m is to read the coordinates of the satellite data. Calculation of this procedure with satisfactory results.)
- 2007-09-24 10:09:40下载
- 积分:1
-
PSO(matlab)
说明: PSO算法,通用性较强,只要换一下fitness就可以了(PSO algorithm, universal strong, as long as a change in fitness can be a)
- 2010-04-27 22:00:45下载
- 积分:1
-
CH5programme
说明: 神经网络 侯媛彬 西安电子科技大学出版社 全书程序夹CH5(Neural network)
- 2010-04-30 10:36:17下载
- 积分:1
-
sin-wave-in-simulink
simulin simulation code for sin wave generator and monitoring
- 2012-04-24 14:41:31下载
- 积分:1
-
nibianqi
说明: 逆变器模型。使用在PMSM中的三相交流逆变器(Inverter model. PMSM used in the three-phase AC inverter)
- 2011-03-16 14:29:00下载
- 积分:1
-
assembly-drawings
二级涡轮蜗杆传动减速器,完整装配图,供各位课程设计参考用(Two worm gear reducer, the complete assembly drawings, curriculum design reference for you)
- 2011-11-14 21:29:20下载
- 积分:1
-
fuzzy_pid
模糊自适应PID 更改模糊规则、隶属函数、系统传递函数即可获得不同系统的模糊自适应PID控制算法(Fuzzy adaptive PID change the fuzzy rules, membership function, the system transfer function can be obtained fuzzy adaptive PID control algorithm of the system)
- 2021-04-27 22:18:44下载
- 积分:1
-
yichuansuanfa
一个遗传算法解决最短路径的算法,可以运行,可参考垃圾收运的质料学校(A genetic algorithm to solve the shortest path algorithm, can run, refer to the material that the garbage collector
)
- 2014-08-30 03:32:56下载
- 积分:1
-
adaboost_version1e
这是一个经典的形变模型实施,在一个单一的文件用简单的可以理解的代码。
功能包括两部分一个简单的弱分类器和一个促进部分:
弱分类器试图找到最佳阈值的数据维数对数据进行分离成两个阶级1和1
要求的进一步提高分类器部分迭代,每一步是变化分类权重miss-classified例子。这造成了一连串的“弱分类器”,表现得像一个“强大分类器”
(This a classic AdaBoost implementation, in one single file with easy understandable code.
The function consist of two parts a simple weak classifier and a boosting part:
The weak classifier tries to find the best threshold in one of the data dimensions to separate the data into two classes-1 and 1
The boosting part calls the classifier iteratively, after every classification step it changes the weights of miss-classified examples. This creates a cascade of "weak classifiers" which behaves like a "strong classifier"
.
)
- 2012-04-23 13:17:57下载
- 积分:1