-
matlabengine
VC++环境下调用MATLAB程序实现数字信号处理的方法(VC environment MATLAB program called digital signal processing methods)
- 2008-05-26 20:39:13下载
- 积分:1
-
TV
说明: TV模型源代码 图像去噪中经典模型 在MATLAB下编出来的(TV model source code in the classical model of image denoising under the code out in MATLAB)
- 2011-03-09 16:35:13下载
- 积分:1
-
kmeans
K means code for k means algorithm
- 2013-08-05 12:44:42下载
- 积分:1
-
FastICA_21
This program is implementation of independent component analysis for seperated some mixture of independent signal. In this program you can generate some mixing signal and then separated width independent component analysis algorithm
- 2013-08-26 09:45:47下载
- 积分:1
-
MATLABlanguagecommonlyusedalgorithmforassembly
说明: 《MATLAB语言常用算法程序集》一书的源程序(" MATLAB language commonly used algorithm for assembly," a source book)
- 2009-08-26 11:52:54下载
- 积分:1
-
tpdf
tpdf是计算学生t分布概率密度的函数,在金融数值模拟中有广泛应用。(tpdf is calculated Student' s t-distribution probability density function, there are widely used in the numerical simulation of finance.)
- 2014-10-21 23:25:51下载
- 积分:1
-
vVB__kalmaanb
vb语言实现的卡尔曼滤波源程序源码 (没有测测试,输出部分要配合相应的过程)
(the vb language Kalman filtering source source (not detected by the test, the output section with the corresponding process))
- 2012-08-29 22:49:37下载
- 积分:1
-
chap2_06_RLS
系统辨识与自适应控制MATLAB仿真教材里递推最小二乘法的参数估计的matlab实现的程序(Estimation of system identification and adaptive control of MATLAB simulation in the textbook recursive least squares parameter matlab program)
- 2015-02-03 18:00:01下载
- 积分:1
-
slm_modified
A simple code for selective mapping
- 2013-12-02 15:45:20下载
- 积分:1
-
ROC-plot.zip
试者工作特征曲线 (receiver operating characteristic curve,简称ROC曲线),又称为感受性曲线(sensitivity curve)。得此名的原因在于曲线上各点反映着相同的感受性,它们都是对同一信号刺激的反应,只不过是在几种不同的判定标准下所得的结果而已。接受者操作特性曲线就是以虚报概率为横轴,击中概率为纵轴所组成的坐标图,和被试在特定刺激条件下由于采用不同的判断标准得出的不同结果画出的曲线。(PLOTROC Plot receiver operating characteristic.
Syntax
plotroc(targets,outputs)
plotroc(targets1,outputs1, name1 ,targets,outputs2, name2 , ...)
Description
PLOTROC(TARGETS,OUTPUTS) plots the receiver operating characteristic
for each output class. The more each curve hugs the left and top edges
of the plot, the better the classification.
PLOTROC(TARGETS1,OUTPUTS2, name1 ,...) generates multiple plots.
)
- 2012-02-12 11:58:08下载
- 积分:1