登录
首页 » Python » GAN-master

GAN-master

于 2018-04-04 发布 文件大小:13228KB
0 155
下载积分: 1 下载次数: 21

代码说明:

  GAN标准生成对抗网络基于tensorflow的实现(Implementation of GAN standard generation confrontation network based on tensorflow.)

文件列表:

GAN-master, 0 , 2017-05-07
GAN-master\Datas, 0 , 2017-05-07
GAN-master\Datas\mnist, 0 , 2017-05-07
GAN-master\Datas\mnist\t10k-images-idx3-ubyte.gz, 1648877 , 2017-05-07
GAN-master\Datas\mnist\t10k-labels-idx1-ubyte.gz, 4542 , 2017-05-07
GAN-master\Datas\mnist\train-images-idx3-ubyte.gz, 9912422 , 2017-05-07
GAN-master\Datas\mnist\train-labels-idx1-ubyte.gz, 28881 , 2017-05-07
GAN-master\README.md, 12072 , 2017-05-07
GAN-master\README, 0 , 2017-05-07
GAN-master\README\images, 0 , 2017-05-07
GAN-master\README\images\cgan.png, 7178 , 2017-05-07
GAN-master\README\images\gan.png, 6753 , 2017-05-07
GAN-master\README\images\infogan1.png, 4228 , 2017-05-07
GAN-master\README\images\infogan2.png, 4777 , 2017-05-07
GAN-master\README\results, 0 , 2017-05-07
GAN-master\README\results\cgan_mlp.png, 47347 , 2017-05-07
GAN-master\README\results\face3D_dcgan.png, 151303 , 2017-05-07
GAN-master\Samples, 0 , 2017-05-07
GAN-master\Samples\mnist_cgan_classifier, 0 , 2017-05-07
GAN-master\Samples\mnist_cgan_classifier\000_0.png, 32085 , 2017-05-07
GAN-master\Samples\mnist_cgan_classifier\001_1.png, 14637 , 2017-05-07
GAN-master\Samples\mnist_cgan_classifier\002_2.png, 13206 , 2017-05-07
GAN-master\Samples\mnist_cgan_classifier\003_3.png, 12778 , 2017-05-07
GAN-master\Samples\mnist_cgan_classifier\004_4.png, 12493 , 2017-05-07
GAN-master\Samples\mnist_cgan_classifier\005_5.png, 12609 , 2017-05-07
GAN-master\Samples\mnist_cgan_classifier\006_6.png, 12861 , 2017-05-07
GAN-master\Samples\mnist_cgan_classifier\348_8.png, 11793 , 2017-05-07
GAN-master\Samples\mnist_cgan_conv, 0 , 2017-05-07
GAN-master\Samples\mnist_cgan_conv\000_0.png, 31917 , 2017-05-07
GAN-master\Samples\mnist_cgan_conv\001_1.png, 13567 , 2017-05-07
GAN-master\Samples\mnist_cgan_conv\002_2.png, 11557 , 2017-05-07
GAN-master\Samples\mnist_cgan_conv\005_5.png, 10345 , 2017-05-07
GAN-master\Samples\mnist_cgan_conv\008_8.png, 12074 , 2017-05-07
GAN-master\Samples\mnist_cgan_conv\039_9.png, 12607 , 2017-05-07
GAN-master\Samples\mnist_cgan_conv\043_3.png, 13035 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp, 0 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\000_0.png, 31964 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\001_1.png, 21156 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\002_2.png, 21020 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\003_3.png, 19724 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\036_6.png, 14516 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\060_0.png, 14986 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\061_1.png, 9493 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\062_2.png, 16208 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\063_3.png, 14668 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\064_4.png, 15572 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\065_5.png, 14644 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\066_6.png, 13623 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\067_7.png, 13277 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\068_8.png, 14995 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\069_9.png, 13014 , 2017-05-07
GAN-master\Samples\mnist_cgan_wgan_classifier, 0 , 2017-05-07
GAN-master\Samples\mnist_cgan_wgan_classifier\000_0.png, 31984 , 2017-05-07
GAN-master\Samples\mnist_cgan_wgan_classifier\001_1.png, 14636 , 2017-05-07
GAN-master\Samples\mnist_cgan_wgan_classifier\002_2.png, 13766 , 2017-05-07
GAN-master\Samples\mnist_cgan_wgan_classifier\003_3.png, 13297 , 2017-05-07
GAN-master\Samples\mnist_cgan_wgan_classifier\027_7.png, 13322 , 2017-05-07
GAN-master\Samples\mnist_cgan_wgan_classifier\028_8.png, 13479 , 2017-05-07
GAN-master\Samples\mnist_cgan_wgan_classifier\029_9.png, 13732 , 2017-05-07
GAN-master\Samples\mnist_cgan_wgan_classifier\030_0.png, 13388 , 2017-05-07
GAN-master\Samples\mnist_dcgan, 0 , 2017-05-07
GAN-master\Samples\mnist_dcgan\000.png, 31961 , 2017-05-07
GAN-master\Samples\mnist_dcgan\001.png, 17299 , 2017-05-07
GAN-master\Samples\mnist_dcgan\002.png, 13444 , 2017-05-07
GAN-master\Samples\mnist_dcgan\025.png, 12733 , 2017-05-07
GAN-master\Samples\mnist_dcgan\028.png, 12899 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv, 0 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\000_0.png, 32046 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\001_1.png, 12917 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\002_2.png, 12055 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\003_3.png, 12830 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\084_4.png, 12281 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\085_5.png, 12314 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\086_6.png, 12085 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\087_7.png, 12116 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\088_8.png, 12608 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\089_9.png, 12133 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\090_0.png, 12237 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\091_1.png, 11868 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\092_2.png, 11524 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\093_3.png, 12472 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\094_4.png, 11529 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\095_5.png, 12117 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share, 0 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\000_0.png, 31894 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\001_1.png, 13656 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\002_2.png, 12970 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\003_3.png, 13400 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\048_8.png, 12517 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\049_9.png, 13065 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\050_0.png, 12801 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\051_1.png, 12187 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\052_2.png, 12247 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\054_4.png, 11925 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\055_5.png, 12350 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\058_8.png, 12323 , 2017-05-07
GAN-master\Samples\mnist_infogan_mlp, 0 , 2017-05-07
GAN-master\Samples\mnist_infogan_mlp\000_0.png, 32026 , 2017-05-07
GAN-master\Samples\mnist_infogan_mlp\001_1.png, 20314 , 2017-05-07
GAN-master\Samples\mnist_infogan_mlp\002_2.png, 17154 , 2017-05-07

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 3D旋转的flash图片显示特效 含Fla源文件
    3D旋转的flash图片显示特效 含Fla源文件,多幅图片围成圆形在不停的旋转,响应鼠标动作,当鼠标放上的时候,会感应出鼠标的移动方向从而改变它的转向或速度,点击后会出现说明及链接,鼠标移动的快,旋转速度越快。透视和空间感就越强。
    2023-04-27 10:25:03下载
    积分:1
  • 新建文件夹
    说明:  基于matlab的卷积演示系统,可以实现线性卷积、循环卷积、基于重叠相加法的快速卷积的演示(Demonstration system of linear convolution)
    2019-12-30 11:24:57下载
    积分:1
  • Stewart_Platform-master
    仿真的一个六自由度平台。运用反解算法,非常有用(A six degree of freedom platform for simulation. Inverse solution algorithm is very useful)
    2020-06-29 18:40:01下载
    积分:1
  • 建立交叉编译
    build cross compiler
    2022-08-07 05:26:26下载
    积分:1
  • C_Primer_Plus_4_5_EN_Chinese
    C_Primer_Plus_4_5 中英文合辑(C_Primer_Plus_4_5_EN_Chinese)
    2017-06-27 10:23:43下载
    积分:1
  • 右侧带缩略图jQuery焦点图代码
    侧带缩略图的jQuery焦点图代码,可用于个人博客或企业站点展示,宽屏时效果比较好(JQuery Focus Diagram Code with a side thumbnail that can be used for personal blogs or corporate site presentations. Wide screen is better)
    2018-09-30 14:15:33下载
    积分:1
  • 是关于模糊聚类的c语言程序,效果不错的模,糊聚类分析 模糊聚类 聚类分析 FUZZY 模糊C...
    是关于模糊聚类的c语言程序,效果不错的模,糊聚类分析 模糊聚类 聚类分析 FUZZY 模糊C-MATLAB
    2022-02-07 19:28:13下载
    积分:1
  • 《Python数据挖掘入门与实践》
    说明:  《Python数据挖掘入门与实践》 本书为数据挖掘入门读物,介绍了数据挖掘的基础知识、基本工具和实践方法,通过循序渐进地讲解算法,带你轻松踏上数据挖掘之旅。本书采用理论与实践相结合的方式,呈现了如何使用决策树和随机森林算法预测美国职业篮球联赛比赛结果,如何使用亲和性分析方法推荐电影,如何使用朴素贝叶斯算法进行社会媒体挖掘,等等。本书也涉及神经网络、深度学习、大数据处理等内容。(Introduction and Practice of Python Data Mining)
    2019-05-07 11:55:15下载
    积分:1
  • feikong
    说明:  北航飞控第一次大作业,用matlab编程仿真,采用倒数第二组参数。(The first major flight control operation of Beihang.)
    2020-04-12 00:23:06下载
    积分:1
  • STM32F10xxx参考手册中文版
    stm32f103系列芯片中文参考手册,给需要的人,拿走不谢(A rare reference manual for Chinese development of STM32F103 series chips)
    2019-07-02 09:15:37下载
    积分:1
  • 696516资源总数
  • 106436会员总数
  • 7今日下载