登录
首页 » Python » GAN-master

GAN-master

于 2018-04-04 发布 文件大小:13228KB
0 150
下载积分: 1 下载次数: 21

代码说明:

  GAN标准生成对抗网络基于tensorflow的实现(Implementation of GAN standard generation confrontation network based on tensorflow.)

文件列表:

GAN-master, 0 , 2017-05-07
GAN-master\Datas, 0 , 2017-05-07
GAN-master\Datas\mnist, 0 , 2017-05-07
GAN-master\Datas\mnist\t10k-images-idx3-ubyte.gz, 1648877 , 2017-05-07
GAN-master\Datas\mnist\t10k-labels-idx1-ubyte.gz, 4542 , 2017-05-07
GAN-master\Datas\mnist\train-images-idx3-ubyte.gz, 9912422 , 2017-05-07
GAN-master\Datas\mnist\train-labels-idx1-ubyte.gz, 28881 , 2017-05-07
GAN-master\README.md, 12072 , 2017-05-07
GAN-master\README, 0 , 2017-05-07
GAN-master\README\images, 0 , 2017-05-07
GAN-master\README\images\cgan.png, 7178 , 2017-05-07
GAN-master\README\images\gan.png, 6753 , 2017-05-07
GAN-master\README\images\infogan1.png, 4228 , 2017-05-07
GAN-master\README\images\infogan2.png, 4777 , 2017-05-07
GAN-master\README\results, 0 , 2017-05-07
GAN-master\README\results\cgan_mlp.png, 47347 , 2017-05-07
GAN-master\README\results\face3D_dcgan.png, 151303 , 2017-05-07
GAN-master\Samples, 0 , 2017-05-07
GAN-master\Samples\mnist_cgan_classifier, 0 , 2017-05-07
GAN-master\Samples\mnist_cgan_classifier\000_0.png, 32085 , 2017-05-07
GAN-master\Samples\mnist_cgan_classifier\001_1.png, 14637 , 2017-05-07
GAN-master\Samples\mnist_cgan_classifier\002_2.png, 13206 , 2017-05-07
GAN-master\Samples\mnist_cgan_classifier\003_3.png, 12778 , 2017-05-07
GAN-master\Samples\mnist_cgan_classifier\004_4.png, 12493 , 2017-05-07
GAN-master\Samples\mnist_cgan_classifier\005_5.png, 12609 , 2017-05-07
GAN-master\Samples\mnist_cgan_classifier\006_6.png, 12861 , 2017-05-07
GAN-master\Samples\mnist_cgan_classifier\348_8.png, 11793 , 2017-05-07
GAN-master\Samples\mnist_cgan_conv, 0 , 2017-05-07
GAN-master\Samples\mnist_cgan_conv\000_0.png, 31917 , 2017-05-07
GAN-master\Samples\mnist_cgan_conv\001_1.png, 13567 , 2017-05-07
GAN-master\Samples\mnist_cgan_conv\002_2.png, 11557 , 2017-05-07
GAN-master\Samples\mnist_cgan_conv\005_5.png, 10345 , 2017-05-07
GAN-master\Samples\mnist_cgan_conv\008_8.png, 12074 , 2017-05-07
GAN-master\Samples\mnist_cgan_conv\039_9.png, 12607 , 2017-05-07
GAN-master\Samples\mnist_cgan_conv\043_3.png, 13035 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp, 0 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\000_0.png, 31964 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\001_1.png, 21156 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\002_2.png, 21020 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\003_3.png, 19724 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\036_6.png, 14516 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\060_0.png, 14986 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\061_1.png, 9493 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\062_2.png, 16208 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\063_3.png, 14668 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\064_4.png, 15572 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\065_5.png, 14644 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\066_6.png, 13623 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\067_7.png, 13277 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\068_8.png, 14995 , 2017-05-07
GAN-master\Samples\mnist_cgan_mlp\069_9.png, 13014 , 2017-05-07
GAN-master\Samples\mnist_cgan_wgan_classifier, 0 , 2017-05-07
GAN-master\Samples\mnist_cgan_wgan_classifier\000_0.png, 31984 , 2017-05-07
GAN-master\Samples\mnist_cgan_wgan_classifier\001_1.png, 14636 , 2017-05-07
GAN-master\Samples\mnist_cgan_wgan_classifier\002_2.png, 13766 , 2017-05-07
GAN-master\Samples\mnist_cgan_wgan_classifier\003_3.png, 13297 , 2017-05-07
GAN-master\Samples\mnist_cgan_wgan_classifier\027_7.png, 13322 , 2017-05-07
GAN-master\Samples\mnist_cgan_wgan_classifier\028_8.png, 13479 , 2017-05-07
GAN-master\Samples\mnist_cgan_wgan_classifier\029_9.png, 13732 , 2017-05-07
GAN-master\Samples\mnist_cgan_wgan_classifier\030_0.png, 13388 , 2017-05-07
GAN-master\Samples\mnist_dcgan, 0 , 2017-05-07
GAN-master\Samples\mnist_dcgan\000.png, 31961 , 2017-05-07
GAN-master\Samples\mnist_dcgan\001.png, 17299 , 2017-05-07
GAN-master\Samples\mnist_dcgan\002.png, 13444 , 2017-05-07
GAN-master\Samples\mnist_dcgan\025.png, 12733 , 2017-05-07
GAN-master\Samples\mnist_dcgan\028.png, 12899 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv, 0 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\000_0.png, 32046 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\001_1.png, 12917 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\002_2.png, 12055 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\003_3.png, 12830 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\084_4.png, 12281 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\085_5.png, 12314 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\086_6.png, 12085 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\087_7.png, 12116 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\088_8.png, 12608 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\089_9.png, 12133 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\090_0.png, 12237 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\091_1.png, 11868 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\092_2.png, 11524 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\093_3.png, 12472 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\094_4.png, 11529 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv\095_5.png, 12117 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share, 0 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\000_0.png, 31894 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\001_1.png, 13656 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\002_2.png, 12970 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\003_3.png, 13400 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\048_8.png, 12517 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\049_9.png, 13065 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\050_0.png, 12801 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\051_1.png, 12187 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\052_2.png, 12247 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\054_4.png, 11925 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\055_5.png, 12350 , 2017-05-07
GAN-master\Samples\mnist_infogan_conv_without_share\058_8.png, 12323 , 2017-05-07
GAN-master\Samples\mnist_infogan_mlp, 0 , 2017-05-07
GAN-master\Samples\mnist_infogan_mlp\000_0.png, 32026 , 2017-05-07
GAN-master\Samples\mnist_infogan_mlp\001_1.png, 20314 , 2017-05-07
GAN-master\Samples\mnist_infogan_mlp\002_2.png, 17154 , 2017-05-07

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • filter
    dbf filter sample I found and very useful for dbf database programing
    2013-07-24 04:38:03下载
    积分:1
  • Univariate Moran Index
    说明:  Univariate Moran's I 指数计算过程脚本,运用ArcGIS自带的arcpy工具包(Univariate Moran's I calculation script using ArcPy tool in ArcGIS Desktop software)
    2017-06-09 15:51:02下载
    积分:1
  • KTEVPD-Model-S
    说明:  Thermal- Plastic- Creep- Damage Coupling Constitutive Model(Thermal- Plastic- Creep- Damage Coupling Constitutive Model for abaqus)
    2019-03-15 15:11:30下载
    积分:1
  • 一个简单的计数器
    一个简单的计数器-a simple counter
    2022-07-23 20:06:18下载
    积分:1
  • jquery带对话框提示图片相册
    说明:  带对话框提示图片相册是一款带对话框提示,鼠标点击一张张相册图片放大查(Photo album with dialog box prompt is a photo album with dialog box prompt. Click on one photo album by mouse to enlarge it.)
    2019-03-18 15:04:58下载
    积分:1
  • omlsa
    cohen大神的OM-LSA仿真代码 MATLAB software for speech enhancement based on optimally modified LSA (OM-LSA) speech estimator and improved minima controlled recursive averaging (IMCRA) noise estimation approach for robust speech enhancement.(MATLAB software for speech enhancement based on optimally modified LSA (OM-LSA) speech estimator and improved minima controlled recursive averaging (IMCRA) noise estimation approach for robust speech enhancement. The algorithms are described in: I. Cohen and B. Berdugo, Speech Enhancement for Non-Stationary Noise Environments, Signal Processing, Vol. 81, No. 11, Nov. 2001, pp. 2403-2418. I. Cohen, Noise Spectrum Estimation in Adverse Environments: Improved Minima Controlled Recursive Averaging, IEEE Trans. Speech and Audio Processing, Vol. 11, No. 5, Sep. 2003, pp. 466-475. I. Cohen and S. Gannot, Spectral Enhancement Methods, in Jacob Benesty, M. Mohan Sondhi and Yiteng (Arden) Huang (Eds.), Springer Handbook of Speech Processing, Springer, 2008, Part H, Ch. 44, pp. 873-901)
    2021-03-03 15:19:33下载
    积分:1
  • AccessPort137
    用于串口监听,串口发送数据,自动循环发送等功能(Used for serial port monitoring, serial port send data)
    2020-06-22 19:40:02下载
    积分:1
  • 这是一个啤酒销售系统的软件
    这是一个啤酒销售系统的软件-This is a beer sales system software
    2022-08-14 16:49:35下载
    积分:1
  • Isotropic_Fiber_Simulations
    说明:  主要是针对光纤参量放大器中增益光谱的研究,感兴趣的可以参考一下(Mainly for the study of gain spectra in fiber parametric amplifiers, if you are interested, please refer to)
    2021-02-28 11:26:15下载
    积分:1
  • 出错处理,空着就可以了 出错处理,空着就可以了
    出错处理,空着就可以了 出错处理,空着就可以了-出错处理,空着就可以了出错处理,空着就可以了出错处理,空着就可以了
    2022-02-10 00:26:57下载
    积分:1
  • 696518资源总数
  • 106164会员总数
  • 18今日下载