登录
首页 » Python » HMM-homework

HMM-homework

于 2019-04-26 发布 文件大小:101KB
0 210
下载积分: 1 下载次数: 0

代码说明:

  隐马尔科夫实现,包含forward-hmm, Viterbi-hmm, Baum-Welch-hmm(Hidden Markov implementation, including forward-hmm, Viterbi-hmm, Baum-Welch-hmm)

文件列表:

HMM-homework\HMM-homework\Baum-Welch-hmm.py, 3909 , 2019-04-24
HMM-homework\HMM-homework\data.csv, 145 , 2019-04-24
HMM-homework\HMM-homework\forward-hmm.py, 1900 , 2019-04-22
HMM-homework\HMM-homework\ScreenShot\Baum-Welch-hmm.png, 15050 , 2019-04-24
HMM-homework\HMM-homework\ScreenShot\forward-hmm.png, 12628 , 2019-04-24
HMM-homework\HMM-homework\ScreenShot\Viterbi-hmm.png, 12293 , 2019-04-24
HMM-homework\HMM-homework\utils.py, 1133 , 2019-04-22
HMM-homework\HMM-homework\Viterbi-hmm.py, 2445 , 2019-04-22
HMM-homework\HMM-homework\瞎编的HMM作业数据.csv, 127 , 2019-04-22
HMM-homework\~$瞎编的HMM作业数据.xlsx, 165 , 2019-04-22
HMM-homework\参考仓库\Baum-Welch-HMM\hmm.py, 757 , 2019-04-23
HMM-homework\参考仓库\Baum-Welch-HMM\test.py, 2201 , 2019-04-23
HMM-homework\参考仓库\forward-backward-hmm-master\.gitignore, 17 , 2017-01-09
HMM-homework\参考仓库\forward-backward-hmm-master\Brown_sample.txt, 2984 , 2017-01-09
HMM-homework\参考仓库\forward-backward-hmm-master\forward-backward-hmm.py, 5626 , 2017-01-09
HMM-homework\参考仓库\forward-backward-hmm-master\prob_vector.pickle, 3475 , 2017-01-09
HMM-homework\参考仓库\forward-backward-hmm-master\README.md, 2442 , 2017-01-09
HMM-homework\参考仓库\forward-backward-hmm-master\simple.pickle, 600 , 2017-01-09
HMM-homework\参考仓库\Hidden-Markov-Model-master\Document.py, 369 , 2019-04-23
HMM-homework\参考仓库\Hidden-Markov-Model-master\EM.py, 4097 , 2017-11-14
HMM-homework\参考仓库\Hidden-Markov-Model-master\HMM.py, 7369 , 2017-11-14
HMM-homework\参考仓库\Hidden-Markov-Model-master\LICENSE, 35141 , 2017-11-14
HMM-homework\参考仓库\Hidden-Markov-Model-master\README.md, 608 , 2017-11-14
HMM-homework\参考仓库\Hidden-Markov-Model-master\Test.py, 1544 , 2017-11-14
HMM-homework\参考仓库\Hidden-Markov-Model-master\__pycache__\Document.cpython-36.pyc, 801 , 2019-04-23
HMM-homework\参考仓库\Hidden-Markov-Model-master\__pycache__\HMM.cpython-36.pyc, 8021 , 2019-04-23
HMM-homework\参考仓库\hidden-markov-model-master-by-aehuynh\hmm.py, 4675 , 2016-04-11
HMM-homework\参考仓库\hidden-markov-model-master-by-aehuynh\README.md, 100 , 2016-04-11
HMM-homework\参考仓库\UMDHMM-python-master-by-dkyang\hmm.py, 7216 , 2013-03-21
HMM-homework\参考仓库\UMDHMM-python-master-by-dkyang\README.md, 939 , 2013-03-21
HMM-homework\参考仓库\UMDHMM-python-master-by-dkyang\test.hmm, 136 , 2013-03-21
HMM-homework\参考仓库\UMDHMM-python-master-by-dkyang\test.seq, 35 , 2013-03-21
HMM-homework\参考仓库\UMDHMM-python-master-by-dkyang\test_hmm.py, 1039 , 2019-04-23
HMM-homework\瞎编的HMM作业数据.xlsx, 33715 , 2019-04-21
HMM-homework\参考仓库\Hidden-Markov-Model-master\__pycache__, 0 , 2019-04-23
HMM-homework\HMM-homework\ScreenShot, 0 , 2019-04-24
HMM-homework\参考仓库\Baum-Welch-HMM, 0 , 2019-04-23
HMM-homework\参考仓库\forward-backward-hmm-master, 0 , 2017-01-09
HMM-homework\参考仓库\Hidden-Markov-Model-master, 0 , 2019-04-23
HMM-homework\参考仓库\hidden-markov-model-master-by-aehuynh, 0 , 2016-04-11
HMM-homework\参考仓库\UMDHMM-python-master-by-dkyang, 0 , 2013-03-21
HMM-homework\HMM-homework, 0 , 2019-04-24
HMM-homework\参考仓库, 0 , 2019-04-23
HMM-homework, 0 , 2019-04-24

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • Archive
    说明:  PCA 数据降维 PTYTHON 数据分析/挖掘(PCA dimensionality reduction data mining/analysis)
    2020-06-21 15:40:02下载
    积分:1
  • Kmeans-python
    聚类分析31省市的经济情况,以每个聚类簇的平均值来衡量省市经济的发展水平。(Cluster analysis of the economic situation of 31 provinces and municipalities, with the average value of each cluster to measure the level of economic development of provinces and municipalities.)
    2020-07-03 13:40:02下载
    积分:1
  • 技术在公安犯罪行为分析中的应用研究
    数据挖掘在经侦项目中的应用,本文用到python中的社区划分算法(In the application of data mining in economic investigation projects, this paper uses community partition algorithm in Python.)
    2020-07-03 08:00:02下载
    积分:1
  • havz-bhlding
    BP网络VC代码 其实这就是成型的算法,估计好多人写过(BP network VC code is actually a molding algorithm, estimated that a lot of people have written)
    2018-09-06 15:00:59下载
    积分:1
  • WOA
    1基于MapReduce的K-Means聚类算法, 2基于MapReduce的分类算法 3MapReduce的频繁项集挖掘算法(1 K-Means clustering algorithm based on MapReduce, 2 classification algorithm based on MapReduce 3 Mining Algorithm for frequent itemsets based on MapReduce)
    2018-07-11 17:26:13下载
    积分:1
  • SSTCA
    半监督迁移SSTCA算法实现,matlab代码。包括拉普拉斯图矩阵(Semisupervised Domain Adaptation via Transfer Component Analysis)
    2021-04-23 13:58:48下载
    积分:1
  • 决策树Java源代码
    资源描述决策树是建立在信息论基础之上,对数据进行分类挖掘的一种方法。其思想是,通过一批已知的训练数据建立一棵决策树,然后利用建好的决策树,对数据进行预测。决策树的建立过程可以看成是数据规则的生成过程。由于基于决策树的分类方法结构简单,本身就是人们能够理解的规则。其次,决策树方法计算复杂度不大,分类效率高,能够处理大数据量的训练集;最后,决策树方法的分类精度较高,对噪声数据有较好的健壮性,符合一般系统的要求。
    2022-03-12 14:04:11下载
    积分:1
  • autoencoder_v1
    用于数据自编码,非线性压缩,降维的一种方法;与PCA不同,pca为线性降维方式(Data auto encoding, nonlinear compression)
    2018-08-02 20:07:50下载
    积分:1
  • 贝叶斯网络 R语言实例 牛津大学
    说明:  R语言构建贝叶斯网络,很实用的讲解和案例(Construction of Bayesian network with R language, a very practical explanation and case)
    2020-06-19 18:26:44下载
    积分:1
  • AP聚类
    说明:  实现了无监督AP聚类 其优势在于不用知道聚类个数(The advantage of unsupervised AP clustering is that the number of clusters is not known)
    2020-08-13 18:05:48下载
    积分:1
  • 696518资源总数
  • 104841会员总数
  • 23今日下载