-
nc2432134
实现三维作图函数,先基于二维作图,然后三维,对于特定函数,取得了良好的效果(Three-dimensional mapping function, the first based on two-dimensional mapping, and three-dimensional, for a particular function, and achieved good results)
- 2011-11-09 20:05:14下载
- 积分:1
-
AlejandroPAll
使用matlab进行gif图片的生成,可画函数图像以及不稳定流程,3种模式分别对应3种算法(Use matlab to generate a gif image, the image can be painted functions and unstable process, three modes corresponding to the three algorithms)
- 2015-07-19 00:16:29下载
- 积分:1
-
svm_v0[1].55beta.tar
用于进行所谓的支持向量机的分析,关键是对信号进行分类,用于处理非线性非平稳信号(used for the so-called support vector machines, the key is the signal classification for handling nonlinear non-stationary signals)
- 2007-01-18 15:40:16下载
- 积分:1
-
matlab-target-tracking
很好用的几个matlab多目标视频跟踪的程序,有粒子滤波的,帧差法的等等,可以直接仿真运行(Good use of several multi-target video tracking matlab procedures, particle filter, frame difference method, etc., can be directly run the simulation)
- 2013-09-21 15:35:11下载
- 积分:1
-
projekat-AiNU
adaptive controlling matlab and simulink
- 2013-03-28 20:53:51下载
- 积分:1
-
mycontourlet
基非下采样的Contourlet变换的图像融合,要放到NSCT工具包中执行(Under the base of non-sampling Contourlet transform image fusion, to put the implementation of the toolkit NSCT)
- 2010-10-30 10:48:17下载
- 积分:1
-
smooth_update
数值计算中的平滑算法,非线性滤波中使用。(Numerical calculation of the smoothing algorithm, the use of nonlinear filtering.)
- 2009-05-03 21:52:44下载
- 积分:1
-
gao-si-bai-zao-sheng-
matlan语言编写的加入白噪声后的地震加速度记录。(matlan language added white noise earthquake acceleration records.)
- 2012-09-10 20:03:48下载
- 积分:1
-
FISHER
里面有两组数据,然后分为训练样本组和测试样本组,都采用fisher准则判定,再对结果惊醒分析(There are two sets of data, and then divided into groups of training samples and test samples group, have adopted guidelines for determining fisher, and then woke up on the results of the analysis)
- 2013-12-19 18:00:33下载
- 积分:1
-
RICE-UNIVERSITY
标准压缩感知(CS)理论决定了可靠的信号恢复是可能给M= O(KLOG(N / K))的测量。我们证明了它可以通过利用超越简单的稀疏性和可压缩性由包括价值观和信号系数的位置之间的依赖关系更加逼真信号模型大大降低Mwithout牺牲的鲁棒性。(The standard compressive sensing (CS) theory dictates that robust signal recovery is possible from M=O(Klog(N/K)) measurements. We demonstrate that it is possible to substantially decrease Mwithout sacrificing robustness by leveraging more realistic signal models that go beyond simple sparsity and compressibility by including dependencies between values and locations of the signal coefficients.
)
- 2014-01-06 20:07:54下载
- 积分:1