登录
首页 » Python » 机器学习Python程序

机器学习Python程序

于 2018-10-26 发布 文件大小:106KB
0 235
下载积分: 1 下载次数: 13

代码说明:

  覆盖了基本常用的机器学习算法。包括线性回归与分类算法;决策树;多种降维算法;优化算法;强化学习等多类算法的Python代码。(It covers the commonly used machine learning algorithms. Including linear regression and classification algorithm; decision tree; a variety of dimensionality reduction algorithm; optimization algorithm; reinforcement learning and other algorithms of Python code.)

文件列表:

Machine Learning, 0 , 2009-04-20
Machine Learning\src, 0 , 2009-04-20
Machine Learning\src\10 Dimension Reduction, 0 , 2009-04-20
Machine Learning\src\10 Dimension Reduction\ecoli.py, 1660 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\factoranalysis.py, 1730 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\floyd.py, 1389 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\iris.py, 2520 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\isomap.py, 3512 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\kernelpca.py, 1947 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\kpcademo.py, 1452 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\lda.py, 1689 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\lle.py, 1979 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\pca.py, 1227 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\pcademo.py, 849 , 2009-03-25
Machine Learning\src\11 Optimisation, 0 , 2009-04-20
Machine Learning\src\11 Optimisation\CG.py, 1579 , 2009-03-25
Machine Learning\src\11 Optimisation\LevenbergMarquardt.py, 1748 , 2009-03-25
Machine Learning\src\11 Optimisation\LevenbergMarquardt_leastsq.py, 2692 , 2009-03-25
Machine Learning\src\11 Optimisation\Newton.py, 965 , 2009-03-25
Machine Learning\src\11 Optimisation\steepest.py, 841 , 2009-03-25
Machine Learning\src\11 Optimisation\TSP.py, 5392 , 2009-03-25
Machine Learning\src\12 Evolutionary, 0 , 2009-04-20
Machine Learning\src\12 Evolutionary\exhaustiveKnapsack.py, 1015 , 2009-03-25
Machine Learning\src\12 Evolutionary\fourpeaks.py, 1019 , 2009-03-25
Machine Learning\src\12 Evolutionary\ga.py, 5505 , 2009-03-25
Machine Learning\src\12 Evolutionary\greedyKnapsack.py, 1044 , 2009-03-25
Machine Learning\src\12 Evolutionary\knapsack.py, 849 , 2009-03-25
Machine Learning\src\12 Evolutionary\PBIL.py, 1466 , 2009-03-25
Machine Learning\src\12 Evolutionary\run_ga.py, 502 , 2009-03-25
Machine Learning\src\13 Reinforcement, 0 , 2009-04-20
Machine Learning\src\13 Reinforcement\SARSA.py, 1987 , 2009-03-25
Machine Learning\src\13 Reinforcement\SARSA_cliff.py, 4604 , 2009-03-25
Machine Learning\src\13 Reinforcement\TDZero.py, 1415 , 2009-03-25
Machine Learning\src\13 Reinforcement\TDZero_cliff.py, 4118 , 2009-03-25
Machine Learning\src\14 MCMC, 0 , 2009-04-20
Machine Learning\src\14 MCMC\BoxMuller.py, 1062 , 2009-03-25
Machine Learning\src\14 MCMC\Gibbs.py, 1475 , 2009-03-25
Machine Learning\src\14 MCMC\importancesampling.py, 1207 , 2009-03-25
Machine Learning\src\14 MCMC\lcg.py, 847 , 2009-03-25
Machine Learning\src\14 MCMC\MH.py, 1527 , 2009-03-25
Machine Learning\src\14 MCMC\rejectionsampling.py, 1412 , 2009-03-25
Machine Learning\src\14 MCMC\SIR.py, 1557 , 2009-03-25
Machine Learning\src\15 Graphical Models, 0 , 2009-04-20
Machine Learning\src\15 Graphical Models\Gibbs.py, 4660 , 2009-03-25
Machine Learning\src\15 Graphical Models\graphdemo.py, 852 , 2009-03-25
Machine Learning\src\15 Graphical Models\HMM.py, 3364 , 2009-03-25
Machine Learning\src\15 Graphical Models\Kalman.py, 1841 , 2009-03-25
Machine Learning\src\15 Graphical Models\MRF.py, 1607 , 2009-03-25
Machine Learning\src\15 Graphical Models\world.png, 751 , 2009-03-25
Machine Learning\src\2 Linear, 0 , 2009-04-20
Machine Learning\src\2 Linear\auto-mpg.py, 866 , 2009-03-25
Machine Learning\src\2 Linear\linreg.py, 671 , 2009-03-25
Machine Learning\src\2 Linear\linreg_logic_eg.py, 1066 , 2009-03-25
Machine Learning\src\2 Linear\logic.py, 1014 , 2009-03-25
Machine Learning\src\2 Linear\pcn.py, 2443 , 2009-03-25
Machine Learning\src\2 Linear\pcn_logic_eg.py, 2182 , 2009-03-25
Machine Learning\src\2 Linear\pima.py, 1786 , 2009-03-25
Machine Learning\src\3 MLP, 0 , 2009-04-20
Machine Learning\src\3 MLP\iris.py, 2048 , 2009-03-25
Machine Learning\src\3 MLP\iris_proc.data, 2700 , 2009-03-25
Machine Learning\src\3 MLP\logic.py, 1262 , 2009-03-25
Machine Learning\src\3 MLP\mlp.py, 5032 , 2009-04-20
Machine Learning\src\3 MLP\PNoz.dat, 185575 , 2009-03-25
Machine Learning\src\3 MLP\PNOz.py, 1699 , 2009-03-25
Machine Learning\src\3 MLP\sinewave.py, 1625 , 2009-03-25
Machine Learning\src\4 RBF, 0 , 2009-04-20
Machine Learning\src\4 RBF\iris.py, 1496 , 2009-03-25
Machine Learning\src\4 RBF\least_squares.py, 754 , 2009-03-25
Machine Learning\src\4 RBF\rbf.py, 3479 , 2009-03-25
Machine Learning\src\6 Trees, 0 , 2009-04-20
Machine Learning\src\6 Trees\dtree.py, 5852 , 2009-03-25
Machine Learning\src\6 Trees\party.data, 211 , 2009-03-25
Machine Learning\src\6 Trees\party.py, 707 , 2009-03-25
Machine Learning\src\7 Committee, 0 , 2009-04-20
Machine Learning\src\7 Committee\bagging.py, 1770 , 2009-03-25
Machine Learning\src\7 Committee\boost.py, 5196 , 2009-03-25
Machine Learning\src\7 Committee\car.data, 51921 , 2009-03-25
Machine Learning\src\7 Committee\car.py, 1935 , 2009-03-25
Machine Learning\src\7 Committee\dtw.py, 7830 , 2009-03-25
Machine Learning\src\7 Committee\party.py, 926 , 2009-03-25
Machine Learning\src\8 Probability, 0 , 2009-04-20
Machine Learning\src\8 Probability\gaussian.py, 1488 , 2009-03-25
Machine Learning\src\8 Probability\GMM.py, 1759 , 2009-03-25
Machine Learning\src\8 Probability\kdtree.py, 2490 , 2009-03-25
Machine Learning\src\8 Probability\knn.py, 957 , 2009-03-25
Machine Learning\src\8 Probability\knnSmoother.py, 2672 , 2009-03-25
Machine Learning\src\8 Probability\plotGaussian.py, 713 , 2009-03-25
Machine Learning\src\8 Probability\ruapehu.dat, 1136 , 2009-03-25
Machine Learning\src\9 Unsupervised, 0 , 2009-04-20
Machine Learning\src\9 Unsupervised\iris.py, 2188 , 2009-03-25
Machine Learning\src\9 Unsupervised\kmeans.py, 2126 , 2009-03-25
Machine Learning\src\9 Unsupervised\kmeansnet.py, 1535 , 2009-03-25
Machine Learning\src\9 Unsupervised\moredemos.py, 2154 , 2009-03-25
Machine Learning\src\9 Unsupervised\shortecoli.data, 11970 , 2009-03-25
Machine Learning\src\9 Unsupervised\som.py, 3488 , 2009-03-25
Machine Learning\src\9 Unsupervised\somdemo.py, 2845 , 2009-03-25

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Kares入门资料打包
    深度学习框架Keras入门资料,里面的代码包括课件和DEMO有利于新书入门学习,简单易懂(Keras Introductory Information of Deep Learning Framework, which includes courseware and DEMO, is helpful for introductory learning of new books. It is easy to understand.)
    2020-06-17 17:00:01下载
    积分:1
  • 基于python和mysql实现成绩管理系统 .zip
    说明:  建立一个小型的数据库 成绩管理系统,用python和mysql语言实现(Build a small database score management system, and implement it with Python and MySQL)
    2020-05-26 14:32:17下载
    积分:1
  • django图书管理系统
    图书管理系统
    2019-05-27下载
    积分:1
  • c# k-mean 挖掘算法算法
    本文件封装好K-MEANS算法,只需要调用函数就可以使用
    2022-01-23 10:52:22下载
    积分:1
  • IABC_KMC_test_on_Iris_wine_glass
    克服K均值聚类算法易受初始聚类中心影响的缺点,优化K均值聚类算法(The K mean clustering algorithm is easily affected by the initial cluster center, and the K mean clustering algorithm is optimized.)
    2018-03-08 11:24:25下载
    积分:1
  • Python-Algorithms-
    python算法教程,数据结构和算法实例在python下的应用范例(tutorial of python algorithms, data structures and algorithms instance application examples in python)
    2013-02-04 11:29:00下载
    积分:1
  • kaggle叶子分类
    利用一维卷积神经网络将叶子进行分类,里面包含的有数据(Classification of leaves using one dimensional convolution neural network)
    2018-07-12 20:41:43下载
    积分:1
  • 深度学习之TensorFlow:入门、原理与进阶实战
    该压缩文件是《深度学习之Tensorflow的入门、原理及进阶实战》,里面讲述了如何搭建TensorFlow环境,并讲述了深度学习的一些理论基础知识,而且通过例子进行辅助,能更好的理解掌握。(The compressed file is "Introduction, Principle and Advanced Combat of Tensorflow for Deep Learning", which describes how to set up the TensorFlow environment, and describes some theoretical basic knowledge of deep learning, and assists with examples to better understand .)
    2019-04-20 20:40:46下载
    积分:1
  • HMM-homework
    说明:  隐马尔科夫实现,包含forward-hmm, Viterbi-hmm, Baum-Welch-hmm(Hidden Markov implementation, including forward-hmm, Viterbi-hmm, Baum-Welch-hmm)
    2019-04-26 17:02:43下载
    积分:1
  • vdlayile-directive-functionality
    数据挖掘中的聚合层次聚类算法,有完整的注释()
    2018-05-24 14:39:07下载
    积分:1
  • 696518资源总数
  • 105559会员总数
  • 1今日下载