登录
首页 » Python » 机器学习Python程序

机器学习Python程序

于 2018-10-26 发布 文件大小:106KB
0 253
下载积分: 1 下载次数: 13

代码说明:

  覆盖了基本常用的机器学习算法。包括线性回归与分类算法;决策树;多种降维算法;优化算法;强化学习等多类算法的Python代码。(It covers the commonly used machine learning algorithms. Including linear regression and classification algorithm; decision tree; a variety of dimensionality reduction algorithm; optimization algorithm; reinforcement learning and other algorithms of Python code.)

文件列表:

Machine Learning, 0 , 2009-04-20
Machine Learning\src, 0 , 2009-04-20
Machine Learning\src\10 Dimension Reduction, 0 , 2009-04-20
Machine Learning\src\10 Dimension Reduction\ecoli.py, 1660 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\factoranalysis.py, 1730 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\floyd.py, 1389 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\iris.py, 2520 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\isomap.py, 3512 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\kernelpca.py, 1947 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\kpcademo.py, 1452 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\lda.py, 1689 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\lle.py, 1979 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\pca.py, 1227 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\pcademo.py, 849 , 2009-03-25
Machine Learning\src\11 Optimisation, 0 , 2009-04-20
Machine Learning\src\11 Optimisation\CG.py, 1579 , 2009-03-25
Machine Learning\src\11 Optimisation\LevenbergMarquardt.py, 1748 , 2009-03-25
Machine Learning\src\11 Optimisation\LevenbergMarquardt_leastsq.py, 2692 , 2009-03-25
Machine Learning\src\11 Optimisation\Newton.py, 965 , 2009-03-25
Machine Learning\src\11 Optimisation\steepest.py, 841 , 2009-03-25
Machine Learning\src\11 Optimisation\TSP.py, 5392 , 2009-03-25
Machine Learning\src\12 Evolutionary, 0 , 2009-04-20
Machine Learning\src\12 Evolutionary\exhaustiveKnapsack.py, 1015 , 2009-03-25
Machine Learning\src\12 Evolutionary\fourpeaks.py, 1019 , 2009-03-25
Machine Learning\src\12 Evolutionary\ga.py, 5505 , 2009-03-25
Machine Learning\src\12 Evolutionary\greedyKnapsack.py, 1044 , 2009-03-25
Machine Learning\src\12 Evolutionary\knapsack.py, 849 , 2009-03-25
Machine Learning\src\12 Evolutionary\PBIL.py, 1466 , 2009-03-25
Machine Learning\src\12 Evolutionary\run_ga.py, 502 , 2009-03-25
Machine Learning\src\13 Reinforcement, 0 , 2009-04-20
Machine Learning\src\13 Reinforcement\SARSA.py, 1987 , 2009-03-25
Machine Learning\src\13 Reinforcement\SARSA_cliff.py, 4604 , 2009-03-25
Machine Learning\src\13 Reinforcement\TDZero.py, 1415 , 2009-03-25
Machine Learning\src\13 Reinforcement\TDZero_cliff.py, 4118 , 2009-03-25
Machine Learning\src\14 MCMC, 0 , 2009-04-20
Machine Learning\src\14 MCMC\BoxMuller.py, 1062 , 2009-03-25
Machine Learning\src\14 MCMC\Gibbs.py, 1475 , 2009-03-25
Machine Learning\src\14 MCMC\importancesampling.py, 1207 , 2009-03-25
Machine Learning\src\14 MCMC\lcg.py, 847 , 2009-03-25
Machine Learning\src\14 MCMC\MH.py, 1527 , 2009-03-25
Machine Learning\src\14 MCMC\rejectionsampling.py, 1412 , 2009-03-25
Machine Learning\src\14 MCMC\SIR.py, 1557 , 2009-03-25
Machine Learning\src\15 Graphical Models, 0 , 2009-04-20
Machine Learning\src\15 Graphical Models\Gibbs.py, 4660 , 2009-03-25
Machine Learning\src\15 Graphical Models\graphdemo.py, 852 , 2009-03-25
Machine Learning\src\15 Graphical Models\HMM.py, 3364 , 2009-03-25
Machine Learning\src\15 Graphical Models\Kalman.py, 1841 , 2009-03-25
Machine Learning\src\15 Graphical Models\MRF.py, 1607 , 2009-03-25
Machine Learning\src\15 Graphical Models\world.png, 751 , 2009-03-25
Machine Learning\src\2 Linear, 0 , 2009-04-20
Machine Learning\src\2 Linear\auto-mpg.py, 866 , 2009-03-25
Machine Learning\src\2 Linear\linreg.py, 671 , 2009-03-25
Machine Learning\src\2 Linear\linreg_logic_eg.py, 1066 , 2009-03-25
Machine Learning\src\2 Linear\logic.py, 1014 , 2009-03-25
Machine Learning\src\2 Linear\pcn.py, 2443 , 2009-03-25
Machine Learning\src\2 Linear\pcn_logic_eg.py, 2182 , 2009-03-25
Machine Learning\src\2 Linear\pima.py, 1786 , 2009-03-25
Machine Learning\src\3 MLP, 0 , 2009-04-20
Machine Learning\src\3 MLP\iris.py, 2048 , 2009-03-25
Machine Learning\src\3 MLP\iris_proc.data, 2700 , 2009-03-25
Machine Learning\src\3 MLP\logic.py, 1262 , 2009-03-25
Machine Learning\src\3 MLP\mlp.py, 5032 , 2009-04-20
Machine Learning\src\3 MLP\PNoz.dat, 185575 , 2009-03-25
Machine Learning\src\3 MLP\PNOz.py, 1699 , 2009-03-25
Machine Learning\src\3 MLP\sinewave.py, 1625 , 2009-03-25
Machine Learning\src\4 RBF, 0 , 2009-04-20
Machine Learning\src\4 RBF\iris.py, 1496 , 2009-03-25
Machine Learning\src\4 RBF\least_squares.py, 754 , 2009-03-25
Machine Learning\src\4 RBF\rbf.py, 3479 , 2009-03-25
Machine Learning\src\6 Trees, 0 , 2009-04-20
Machine Learning\src\6 Trees\dtree.py, 5852 , 2009-03-25
Machine Learning\src\6 Trees\party.data, 211 , 2009-03-25
Machine Learning\src\6 Trees\party.py, 707 , 2009-03-25
Machine Learning\src\7 Committee, 0 , 2009-04-20
Machine Learning\src\7 Committee\bagging.py, 1770 , 2009-03-25
Machine Learning\src\7 Committee\boost.py, 5196 , 2009-03-25
Machine Learning\src\7 Committee\car.data, 51921 , 2009-03-25
Machine Learning\src\7 Committee\car.py, 1935 , 2009-03-25
Machine Learning\src\7 Committee\dtw.py, 7830 , 2009-03-25
Machine Learning\src\7 Committee\party.py, 926 , 2009-03-25
Machine Learning\src\8 Probability, 0 , 2009-04-20
Machine Learning\src\8 Probability\gaussian.py, 1488 , 2009-03-25
Machine Learning\src\8 Probability\GMM.py, 1759 , 2009-03-25
Machine Learning\src\8 Probability\kdtree.py, 2490 , 2009-03-25
Machine Learning\src\8 Probability\knn.py, 957 , 2009-03-25
Machine Learning\src\8 Probability\knnSmoother.py, 2672 , 2009-03-25
Machine Learning\src\8 Probability\plotGaussian.py, 713 , 2009-03-25
Machine Learning\src\8 Probability\ruapehu.dat, 1136 , 2009-03-25
Machine Learning\src\9 Unsupervised, 0 , 2009-04-20
Machine Learning\src\9 Unsupervised\iris.py, 2188 , 2009-03-25
Machine Learning\src\9 Unsupervised\kmeans.py, 2126 , 2009-03-25
Machine Learning\src\9 Unsupervised\kmeansnet.py, 1535 , 2009-03-25
Machine Learning\src\9 Unsupervised\moredemos.py, 2154 , 2009-03-25
Machine Learning\src\9 Unsupervised\shortecoli.data, 11970 , 2009-03-25
Machine Learning\src\9 Unsupervised\som.py, 3488 , 2009-03-25
Machine Learning\src\9 Unsupervised\somdemo.py, 2845 , 2009-03-25

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • qb神经网络
    从数据库获取车辆在一段时间内的所有行驶记录的相关数据,确定所需数据为GPS经纬度坐标和驾驶时长等,QB模型采用MDF的思想,其基本思想为:通过平均直接翻转距离函数定义两条轨迹之间的距离,两条轨迹需要具有相同的经纬度点数,具有相同点数的轨迹最大的优点是对轨迹距离成对计算,且相同轨迹之间具有更高的分辨率,对于轨迹聚类的结果有一定的优化。(Retrieved from the database cars all over a period of time, record the related data, determine the required data for the GPS latitude and longitude coordinates, and the driving time, QB model by adopting the idea of MDF, its basic idea is: flip directly by the average distance function definition of the distance between two trajectories, two tracks will have the same latitude and longitude points, and has the biggest advantages of the same points of trajectory track distance calculation in pairs, and has higher resolution, between the same trajectory for trajectory clustering results have certain optimization.)
    2020-06-23 08:00:01下载
    积分:1
  • Elaslic-finite-finite
    弹性波数值模拟 时间域有限差分算法 双相介质(Numerical Simulation of Elastic Wave in time Domain finite difference algorithm for Dual-phase medium)
    2018-09-11 22:51:07下载
    积分:1
  • DUCCTMJ
    c++算法,常用得算法可以使你编程简单方便,放心使用,一个简单得hello程序()
    2017-12-02 22:34:46下载
    积分:1
  • flume+kafka+storm整合
    flume+kafka+storm整合,1.一个好的项目架构应该具备什么特点? 2.本项目架构是如何保证数据准确性的? 3.什么是Kafka? 4.flume+kafka如何整合? 5.使用什么脚本可以查看flume有没有往Kafka传输数据
    2022-04-15 02:26:59下载
    积分:1
  • vulution-transformation
    C++经典数值算法源码, 包括线性代数方程组的求解, 数学变换与滤波等(C classical numerical algorithm source code, including the solution of linear algebraic equations, mathematical transformation and filtering, etc.)
    2018-11-08 17:00:38下载
    积分:1
  • Dijkstra
    用Python实现dijkstra算法。使用python 语言在网络图中实现Dijkstra 算法,返回从源点出 发到每个结点的最短距离、路径,并打印出该路由(源点)的forwarding table,(dijkstra algorithm in Python)
    2018-01-03 22:33:37下载
    积分:1
  • 算法图解.pdf
    说明:  本书示例丰富,图文并茂,以简明易懂的方式阐释了算法,旨在帮助程序员在日常项目中更好地利用 算法为软件开发助力。前三章介绍算法基础,包括二分查找、大 O 表示法、两种基本的数据结构以及递归 等。余下的篇幅将主要介绍应用广泛的算法,具体内容包括 :面对具体问题时的解决技巧,比如何时采用 贪婪算法或动态规划 ;散列表的应用 ;图算法 ;K 最近邻算法。 本书适合所有程序员、计算机专业相关师生以及对算法感兴趣的读者。(This book is rich in examples, illustrated and illustrated. It explains the algorithm in a concise and easy to understand way. It aims to help programmers make better use of algorithms to help software development in daily projects. The first three chapters introduce the basic algorithm, including binary search, big O representation, two basic data structures and recursion. The remaining space will mainly introduce the widely used algorithms, including: when facing specific problems, how to use greedy algorithm or dynamic programming; hash table application; graph algorithm; k-nearest neighbor algorithm. This book is suitable for all programmers, computer related teachers and students as well as interested in algorithm readers.)
    2020-11-19 16:10:19下载
    积分:1
  • 1
    说明:  深入理解Spark核心技术书籍,书籍对spark进行了深入讲解,并对spark源码进行了剖析(In-depth understanding of Spark core technology books, books on Spark in-depth explanation, and analysis of spark source code)
    2019-08-07 18:05:31下载
    积分:1
  • boxcox
    boxcox函数的python实现,引用该函数可将偏态分布调整为正态分布(Python implementation of box Cox function)
    2020-06-17 09:40:01下载
    积分:1
  • R语言入门与实战:人才缺口巨,现在学习还不晚
    数据时代已经到来,但数据分析、数据挖掘人才却十分短缺,据全球顶尖管理咨询公司麦肯锡(McKinsey)一份详细分析报告显示: 预计到2018年,大数据或者数据工作者的岗位需求将激增,其中大数据科学家的缺口在14万到19万之间,对于懂得如何利用大数据做决策的分析师和经理的岗位缺口则将达到150万! 先来了解一下数据分析,就是以商业目的为驱动,所开展的获取数据、处理数据、分析数据、展示数据和撰写数据结构报告的一系列科学过程。 针对这个过程,R都有相应的方法可以较好地处理和完成数据分析所涉及到的内容。R是一种免费的、开源的语言和操作环境,其初衷是为了统计计算和画图,但是R语言现在能够做的事情已经远远地超出了其初衷,可以在诸多领域进行应用,比如,数据挖掘、机器学习、社交网络、生物信息、金
    2022-08-22 02:40:41下载
    积分:1
  • 696518资源总数
  • 105873会员总数
  • 12今日下载