登录
首页 » Python » 机器学习Python程序

机器学习Python程序

于 2018-10-26 发布 文件大小:106KB
0 276
下载积分: 1 下载次数: 13

代码说明:

  覆盖了基本常用的机器学习算法。包括线性回归与分类算法;决策树;多种降维算法;优化算法;强化学习等多类算法的Python代码。(It covers the commonly used machine learning algorithms. Including linear regression and classification algorithm; decision tree; a variety of dimensionality reduction algorithm; optimization algorithm; reinforcement learning and other algorithms of Python code.)

文件列表:

Machine Learning, 0 , 2009-04-20
Machine Learning\src, 0 , 2009-04-20
Machine Learning\src\10 Dimension Reduction, 0 , 2009-04-20
Machine Learning\src\10 Dimension Reduction\ecoli.py, 1660 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\factoranalysis.py, 1730 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\floyd.py, 1389 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\iris.py, 2520 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\isomap.py, 3512 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\kernelpca.py, 1947 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\kpcademo.py, 1452 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\lda.py, 1689 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\lle.py, 1979 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\pca.py, 1227 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\pcademo.py, 849 , 2009-03-25
Machine Learning\src\11 Optimisation, 0 , 2009-04-20
Machine Learning\src\11 Optimisation\CG.py, 1579 , 2009-03-25
Machine Learning\src\11 Optimisation\LevenbergMarquardt.py, 1748 , 2009-03-25
Machine Learning\src\11 Optimisation\LevenbergMarquardt_leastsq.py, 2692 , 2009-03-25
Machine Learning\src\11 Optimisation\Newton.py, 965 , 2009-03-25
Machine Learning\src\11 Optimisation\steepest.py, 841 , 2009-03-25
Machine Learning\src\11 Optimisation\TSP.py, 5392 , 2009-03-25
Machine Learning\src\12 Evolutionary, 0 , 2009-04-20
Machine Learning\src\12 Evolutionary\exhaustiveKnapsack.py, 1015 , 2009-03-25
Machine Learning\src\12 Evolutionary\fourpeaks.py, 1019 , 2009-03-25
Machine Learning\src\12 Evolutionary\ga.py, 5505 , 2009-03-25
Machine Learning\src\12 Evolutionary\greedyKnapsack.py, 1044 , 2009-03-25
Machine Learning\src\12 Evolutionary\knapsack.py, 849 , 2009-03-25
Machine Learning\src\12 Evolutionary\PBIL.py, 1466 , 2009-03-25
Machine Learning\src\12 Evolutionary\run_ga.py, 502 , 2009-03-25
Machine Learning\src\13 Reinforcement, 0 , 2009-04-20
Machine Learning\src\13 Reinforcement\SARSA.py, 1987 , 2009-03-25
Machine Learning\src\13 Reinforcement\SARSA_cliff.py, 4604 , 2009-03-25
Machine Learning\src\13 Reinforcement\TDZero.py, 1415 , 2009-03-25
Machine Learning\src\13 Reinforcement\TDZero_cliff.py, 4118 , 2009-03-25
Machine Learning\src\14 MCMC, 0 , 2009-04-20
Machine Learning\src\14 MCMC\BoxMuller.py, 1062 , 2009-03-25
Machine Learning\src\14 MCMC\Gibbs.py, 1475 , 2009-03-25
Machine Learning\src\14 MCMC\importancesampling.py, 1207 , 2009-03-25
Machine Learning\src\14 MCMC\lcg.py, 847 , 2009-03-25
Machine Learning\src\14 MCMC\MH.py, 1527 , 2009-03-25
Machine Learning\src\14 MCMC\rejectionsampling.py, 1412 , 2009-03-25
Machine Learning\src\14 MCMC\SIR.py, 1557 , 2009-03-25
Machine Learning\src\15 Graphical Models, 0 , 2009-04-20
Machine Learning\src\15 Graphical Models\Gibbs.py, 4660 , 2009-03-25
Machine Learning\src\15 Graphical Models\graphdemo.py, 852 , 2009-03-25
Machine Learning\src\15 Graphical Models\HMM.py, 3364 , 2009-03-25
Machine Learning\src\15 Graphical Models\Kalman.py, 1841 , 2009-03-25
Machine Learning\src\15 Graphical Models\MRF.py, 1607 , 2009-03-25
Machine Learning\src\15 Graphical Models\world.png, 751 , 2009-03-25
Machine Learning\src\2 Linear, 0 , 2009-04-20
Machine Learning\src\2 Linear\auto-mpg.py, 866 , 2009-03-25
Machine Learning\src\2 Linear\linreg.py, 671 , 2009-03-25
Machine Learning\src\2 Linear\linreg_logic_eg.py, 1066 , 2009-03-25
Machine Learning\src\2 Linear\logic.py, 1014 , 2009-03-25
Machine Learning\src\2 Linear\pcn.py, 2443 , 2009-03-25
Machine Learning\src\2 Linear\pcn_logic_eg.py, 2182 , 2009-03-25
Machine Learning\src\2 Linear\pima.py, 1786 , 2009-03-25
Machine Learning\src\3 MLP, 0 , 2009-04-20
Machine Learning\src\3 MLP\iris.py, 2048 , 2009-03-25
Machine Learning\src\3 MLP\iris_proc.data, 2700 , 2009-03-25
Machine Learning\src\3 MLP\logic.py, 1262 , 2009-03-25
Machine Learning\src\3 MLP\mlp.py, 5032 , 2009-04-20
Machine Learning\src\3 MLP\PNoz.dat, 185575 , 2009-03-25
Machine Learning\src\3 MLP\PNOz.py, 1699 , 2009-03-25
Machine Learning\src\3 MLP\sinewave.py, 1625 , 2009-03-25
Machine Learning\src\4 RBF, 0 , 2009-04-20
Machine Learning\src\4 RBF\iris.py, 1496 , 2009-03-25
Machine Learning\src\4 RBF\least_squares.py, 754 , 2009-03-25
Machine Learning\src\4 RBF\rbf.py, 3479 , 2009-03-25
Machine Learning\src\6 Trees, 0 , 2009-04-20
Machine Learning\src\6 Trees\dtree.py, 5852 , 2009-03-25
Machine Learning\src\6 Trees\party.data, 211 , 2009-03-25
Machine Learning\src\6 Trees\party.py, 707 , 2009-03-25
Machine Learning\src\7 Committee, 0 , 2009-04-20
Machine Learning\src\7 Committee\bagging.py, 1770 , 2009-03-25
Machine Learning\src\7 Committee\boost.py, 5196 , 2009-03-25
Machine Learning\src\7 Committee\car.data, 51921 , 2009-03-25
Machine Learning\src\7 Committee\car.py, 1935 , 2009-03-25
Machine Learning\src\7 Committee\dtw.py, 7830 , 2009-03-25
Machine Learning\src\7 Committee\party.py, 926 , 2009-03-25
Machine Learning\src\8 Probability, 0 , 2009-04-20
Machine Learning\src\8 Probability\gaussian.py, 1488 , 2009-03-25
Machine Learning\src\8 Probability\GMM.py, 1759 , 2009-03-25
Machine Learning\src\8 Probability\kdtree.py, 2490 , 2009-03-25
Machine Learning\src\8 Probability\knn.py, 957 , 2009-03-25
Machine Learning\src\8 Probability\knnSmoother.py, 2672 , 2009-03-25
Machine Learning\src\8 Probability\plotGaussian.py, 713 , 2009-03-25
Machine Learning\src\8 Probability\ruapehu.dat, 1136 , 2009-03-25
Machine Learning\src\9 Unsupervised, 0 , 2009-04-20
Machine Learning\src\9 Unsupervised\iris.py, 2188 , 2009-03-25
Machine Learning\src\9 Unsupervised\kmeans.py, 2126 , 2009-03-25
Machine Learning\src\9 Unsupervised\kmeansnet.py, 1535 , 2009-03-25
Machine Learning\src\9 Unsupervised\moredemos.py, 2154 , 2009-03-25
Machine Learning\src\9 Unsupervised\shortecoli.data, 11970 , 2009-03-25
Machine Learning\src\9 Unsupervised\som.py, 3488 , 2009-03-25
Machine Learning\src\9 Unsupervised\somdemo.py, 2845 , 2009-03-25

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Xztration-Multicondition-Research
    运筹学大作业:实现多条件最大运筹与最小运筹的最佳方案计算与价值预测(Operational Research Big Operation: the Best Scheme calculation and value Prediction for realizing Multi-condition maximum and minimum operational Research)
    2018-11-22 08:59:06下载
    积分:1
  • 568753
    克里金插值法实现二维和三位等高线的绘制功能,()
    2018-03-13 21:20:38下载
    积分:1
  • sklearn-tree-BN-knn
    分类器的性能比较与调优: 使用scikit-learn 包中的tree,贝叶斯,knn,对数据进行模型训练,尽量了解其原理及运用。 使用不同分析三种分类器在实验中的性能比较,分析它们的特点。 本实验采用的数据集为house与segment。(Performance comparison and optimization of classifiers: We use tree, Bayesian and KNN in scikit-learnpackage to train the data model and try to understand its principle and application. The performances of three classifiers are compared and their characteristics are analyzed. The data set used in this experiment is house and segment.)
    2021-04-16 15:08:53下载
    积分:1
  • dulwqcommunication
    拷贝和排序,本程序能实现A[N]与B[M],其中这两个数组都按升序排列,合并为一个C[M+N]数组,且按升序排列,()
    2018-03-14 14:23:09下载
    积分:1
  • fzr-algorithm
    弹性波数值模拟 时间域有限差分算法 双相介质(Numerical Simulation of Elastic Wave in time Domain finite difference algorithm for Dual-phase medium)
    2018-11-14 18:38:23下载
    积分:1
  • Spark机器学习源码
    说明:  Spark 机器学习代码,有大量机器学习算法实例。(Spark machine learning code, there are a large number of machine learning algorithm examples.)
    2020-09-27 16:39:19下载
    积分:1
  • 216663
    对二进制序列进行失配滤波算法,使相对有效性最大()
    2018-05-13 11:30:14下载
    积分:1
  • Hive
    bigdata hive use for hadoop
    2018-04-01 16:13:56下载
    积分:1
  • arma
    ARMA的MATLAB代码,包含自动定阶和参数识别等,代入数据可直接用,不坑。(ARMA MATLAB code, including automatic order and parameter identification, etc., can be used directly into the data, not pit.)
    2017-03-20 11:12:56下载
    积分:1
  • Archive
    说明:  PCA 数据降维 PTYTHON 数据分析/挖掘(PCA dimensionality reduction data mining/analysis)
    2020-06-21 15:40:02下载
    积分:1
  • 696516资源总数
  • 106442会员总数
  • 11今日下载