登录
首页 » Python » 机器学习Python程序

机器学习Python程序

于 2018-10-26 发布 文件大小:106KB
0 270
下载积分: 1 下载次数: 13

代码说明:

  覆盖了基本常用的机器学习算法。包括线性回归与分类算法;决策树;多种降维算法;优化算法;强化学习等多类算法的Python代码。(It covers the commonly used machine learning algorithms. Including linear regression and classification algorithm; decision tree; a variety of dimensionality reduction algorithm; optimization algorithm; reinforcement learning and other algorithms of Python code.)

文件列表:

Machine Learning, 0 , 2009-04-20
Machine Learning\src, 0 , 2009-04-20
Machine Learning\src\10 Dimension Reduction, 0 , 2009-04-20
Machine Learning\src\10 Dimension Reduction\ecoli.py, 1660 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\factoranalysis.py, 1730 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\floyd.py, 1389 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\iris.py, 2520 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\isomap.py, 3512 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\kernelpca.py, 1947 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\kpcademo.py, 1452 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\lda.py, 1689 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\lle.py, 1979 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\pca.py, 1227 , 2009-03-25
Machine Learning\src\10 Dimension Reduction\pcademo.py, 849 , 2009-03-25
Machine Learning\src\11 Optimisation, 0 , 2009-04-20
Machine Learning\src\11 Optimisation\CG.py, 1579 , 2009-03-25
Machine Learning\src\11 Optimisation\LevenbergMarquardt.py, 1748 , 2009-03-25
Machine Learning\src\11 Optimisation\LevenbergMarquardt_leastsq.py, 2692 , 2009-03-25
Machine Learning\src\11 Optimisation\Newton.py, 965 , 2009-03-25
Machine Learning\src\11 Optimisation\steepest.py, 841 , 2009-03-25
Machine Learning\src\11 Optimisation\TSP.py, 5392 , 2009-03-25
Machine Learning\src\12 Evolutionary, 0 , 2009-04-20
Machine Learning\src\12 Evolutionary\exhaustiveKnapsack.py, 1015 , 2009-03-25
Machine Learning\src\12 Evolutionary\fourpeaks.py, 1019 , 2009-03-25
Machine Learning\src\12 Evolutionary\ga.py, 5505 , 2009-03-25
Machine Learning\src\12 Evolutionary\greedyKnapsack.py, 1044 , 2009-03-25
Machine Learning\src\12 Evolutionary\knapsack.py, 849 , 2009-03-25
Machine Learning\src\12 Evolutionary\PBIL.py, 1466 , 2009-03-25
Machine Learning\src\12 Evolutionary\run_ga.py, 502 , 2009-03-25
Machine Learning\src\13 Reinforcement, 0 , 2009-04-20
Machine Learning\src\13 Reinforcement\SARSA.py, 1987 , 2009-03-25
Machine Learning\src\13 Reinforcement\SARSA_cliff.py, 4604 , 2009-03-25
Machine Learning\src\13 Reinforcement\TDZero.py, 1415 , 2009-03-25
Machine Learning\src\13 Reinforcement\TDZero_cliff.py, 4118 , 2009-03-25
Machine Learning\src\14 MCMC, 0 , 2009-04-20
Machine Learning\src\14 MCMC\BoxMuller.py, 1062 , 2009-03-25
Machine Learning\src\14 MCMC\Gibbs.py, 1475 , 2009-03-25
Machine Learning\src\14 MCMC\importancesampling.py, 1207 , 2009-03-25
Machine Learning\src\14 MCMC\lcg.py, 847 , 2009-03-25
Machine Learning\src\14 MCMC\MH.py, 1527 , 2009-03-25
Machine Learning\src\14 MCMC\rejectionsampling.py, 1412 , 2009-03-25
Machine Learning\src\14 MCMC\SIR.py, 1557 , 2009-03-25
Machine Learning\src\15 Graphical Models, 0 , 2009-04-20
Machine Learning\src\15 Graphical Models\Gibbs.py, 4660 , 2009-03-25
Machine Learning\src\15 Graphical Models\graphdemo.py, 852 , 2009-03-25
Machine Learning\src\15 Graphical Models\HMM.py, 3364 , 2009-03-25
Machine Learning\src\15 Graphical Models\Kalman.py, 1841 , 2009-03-25
Machine Learning\src\15 Graphical Models\MRF.py, 1607 , 2009-03-25
Machine Learning\src\15 Graphical Models\world.png, 751 , 2009-03-25
Machine Learning\src\2 Linear, 0 , 2009-04-20
Machine Learning\src\2 Linear\auto-mpg.py, 866 , 2009-03-25
Machine Learning\src\2 Linear\linreg.py, 671 , 2009-03-25
Machine Learning\src\2 Linear\linreg_logic_eg.py, 1066 , 2009-03-25
Machine Learning\src\2 Linear\logic.py, 1014 , 2009-03-25
Machine Learning\src\2 Linear\pcn.py, 2443 , 2009-03-25
Machine Learning\src\2 Linear\pcn_logic_eg.py, 2182 , 2009-03-25
Machine Learning\src\2 Linear\pima.py, 1786 , 2009-03-25
Machine Learning\src\3 MLP, 0 , 2009-04-20
Machine Learning\src\3 MLP\iris.py, 2048 , 2009-03-25
Machine Learning\src\3 MLP\iris_proc.data, 2700 , 2009-03-25
Machine Learning\src\3 MLP\logic.py, 1262 , 2009-03-25
Machine Learning\src\3 MLP\mlp.py, 5032 , 2009-04-20
Machine Learning\src\3 MLP\PNoz.dat, 185575 , 2009-03-25
Machine Learning\src\3 MLP\PNOz.py, 1699 , 2009-03-25
Machine Learning\src\3 MLP\sinewave.py, 1625 , 2009-03-25
Machine Learning\src\4 RBF, 0 , 2009-04-20
Machine Learning\src\4 RBF\iris.py, 1496 , 2009-03-25
Machine Learning\src\4 RBF\least_squares.py, 754 , 2009-03-25
Machine Learning\src\4 RBF\rbf.py, 3479 , 2009-03-25
Machine Learning\src\6 Trees, 0 , 2009-04-20
Machine Learning\src\6 Trees\dtree.py, 5852 , 2009-03-25
Machine Learning\src\6 Trees\party.data, 211 , 2009-03-25
Machine Learning\src\6 Trees\party.py, 707 , 2009-03-25
Machine Learning\src\7 Committee, 0 , 2009-04-20
Machine Learning\src\7 Committee\bagging.py, 1770 , 2009-03-25
Machine Learning\src\7 Committee\boost.py, 5196 , 2009-03-25
Machine Learning\src\7 Committee\car.data, 51921 , 2009-03-25
Machine Learning\src\7 Committee\car.py, 1935 , 2009-03-25
Machine Learning\src\7 Committee\dtw.py, 7830 , 2009-03-25
Machine Learning\src\7 Committee\party.py, 926 , 2009-03-25
Machine Learning\src\8 Probability, 0 , 2009-04-20
Machine Learning\src\8 Probability\gaussian.py, 1488 , 2009-03-25
Machine Learning\src\8 Probability\GMM.py, 1759 , 2009-03-25
Machine Learning\src\8 Probability\kdtree.py, 2490 , 2009-03-25
Machine Learning\src\8 Probability\knn.py, 957 , 2009-03-25
Machine Learning\src\8 Probability\knnSmoother.py, 2672 , 2009-03-25
Machine Learning\src\8 Probability\plotGaussian.py, 713 , 2009-03-25
Machine Learning\src\8 Probability\ruapehu.dat, 1136 , 2009-03-25
Machine Learning\src\9 Unsupervised, 0 , 2009-04-20
Machine Learning\src\9 Unsupervised\iris.py, 2188 , 2009-03-25
Machine Learning\src\9 Unsupervised\kmeans.py, 2126 , 2009-03-25
Machine Learning\src\9 Unsupervised\kmeansnet.py, 1535 , 2009-03-25
Machine Learning\src\9 Unsupervised\moredemos.py, 2154 , 2009-03-25
Machine Learning\src\9 Unsupervised\shortecoli.data, 11970 , 2009-03-25
Machine Learning\src\9 Unsupervised\som.py, 3488 , 2009-03-25
Machine Learning\src\9 Unsupervised\somdemo.py, 2845 , 2009-03-25

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • YCYB6
    线性拟合和二次拟合函数 pdg正交多项式作最小二乘拟合(Least Square fitting of Linear fitting and Quadratic fitting function pdg orthogonal polynomial)
    2018-09-05 21:15:07下载
    积分:1
  • PGD
    最优化方法之近端梯度下降法,适用于L1正则项的最优化。(Proximal gradient descent)
    2020-06-30 06:00:02下载
    积分:1
  • StockPricePrediction-master
    python深度学习股票分析框架,就这么多了(python learning stock)
    2019-06-18 12:19:59下载
    积分:1
  • 图书管理系统编写,初学django,增删改查
    图书的增删改查,python2.7环境 【调试说明】 0. 安装缺失的包  pip2 install django pip2 instatll pymysql 1. 手动创建mysql数据库 day59_3,并修改settings.py中的 DATABASES 节点 为你本机数据库信息 2. 初始化数据库表结构,执行 D:idePython27>python "D:StudyProjectsPythonProjectday59 图书管理系统manage.py" migrate  3. 运行程序如下: D:idePython27>python "D:StudyProjectsPythonProjectday59manage.py" runserver 4. 访问网址 http://localhost:8000 即可看到如下截图
    2019-07-31下载
    积分:1
  • Python for Data Analysis
    说明:  利用python进行数据分析,英文书籍,从pandas库的数据分析工具开始利用高性能工具对数据进行加载、清理、转换、合并以及重塑;利用matpIotlib创建散点图以及静态或交互式的可视化结果;利用pandas的groupby功能对数据集进行切片、切块和汇总操作;处理各种各样的时间序列数据。(Starting from the data analysis tools of pandas database, high performance tools are used to load, clean, transform, merge and remodel data; scatter plots and static or interactive visualization results are created by matpIotlib; data sets are sliced, sliced and aggregated by pandas group by function; and various operations are processed. Time series data.)
    2020-06-16 03:20:01下载
    积分:1
  • DataMiningProject-Bearing
    说明:  用于轴承大数据的故障诊断和数据挖掘,可将轴承的振动信息进行数组分析,获得预测模型,准确率较高(It can be used for fault diagnosis and data mining of bearing big data. It can analyze the vibration information of bearing by array and obtain the prediction model with high accuracy)
    2020-04-12 12:38:34下载
    积分:1
  • 算法图解.pdf
    说明:  本书示例丰富,图文并茂,以简明易懂的方式阐释了算法,旨在帮助程序员在日常项目中更好地利用 算法为软件开发助力。前三章介绍算法基础,包括二分查找、大 O 表示法、两种基本的数据结构以及递归 等。余下的篇幅将主要介绍应用广泛的算法,具体内容包括 :面对具体问题时的解决技巧,比如何时采用 贪婪算法或动态规划 ;散列表的应用 ;图算法 ;K 最近邻算法。 本书适合所有程序员、计算机专业相关师生以及对算法感兴趣的读者。(This book is rich in examples, illustrated and illustrated. It explains the algorithm in a concise and easy to understand way. It aims to help programmers make better use of algorithms to help software development in daily projects. The first three chapters introduce the basic algorithm, including binary search, big O representation, two basic data structures and recursion. The remaining space will mainly introduce the widely used algorithms, including: when facing specific problems, how to use greedy algorithm or dynamic programming; hash table application; graph algorithm; k-nearest neighbor algorithm. This book is suitable for all programmers, computer related teachers and students as well as interested in algorithm readers.)
    2020-11-19 16:10:19下载
    积分:1
  • JEXQKRB8
    用最小二乘法计算分形图案的维数,试试看怎么样,请多包涵!!(Use the least square method to calculate the dimensions of fractal patterns, try how, please include more!)
    2018-09-05 17:25:57下载
    积分:1
  • 从零开始学Python网络爬虫源代码+教学PPT
    《从零开始学爬虫》的配套资料(PPT和源码)("Learning Reptiles from Zero" (PPT and Source))
    2019-03-18 22:06:06下载
    积分:1
  • SVR
    训练SVR模型做预测,可调整训练集和测试集比例及SVR参数,预测性能用MAP反映(The training SVR model can be used for prediction. The proportion of training set and test set and the parameters of SVR can be adjusted. The prediction performance can be reflected by MAP.)
    2021-03-29 09:39:10下载
    积分:1
  • 696518资源总数
  • 106227会员总数
  • 11今日下载