登录
首页 » Python » Python-for-Finance-Second-Edition-master

Python-for-Finance-Second-Edition-master

于 2018-11-24 发布 文件大小:267KB
0 232
下载积分: 1 下载次数: 4

代码说明:

  Python是一种面向对象、解释型计算机程序设计语言,其应用领域非常广泛,包括数据分析、自然语言处理、机器学习、科学计算以及推荐系统构建等。 本书用Python语言来讲解算法的分析和设计。本书主要关注经典的算法,但同时会为读者理解基本算法问题和解决问题打下很好的基础。(Python is an object-oriented, interpretive computer programming language. It has a wide range of applications, including data analysis, natural language processing, machine learning, scientific computing and recommendation system construction. This book uses Python language to explain the analysis and design of algorithms. This book focuses on classical algorithms, but at the same time it will lay a good foundation for readers to understand basic algorithms and solve problems. The book consists of 11 chapters. The tree, graph, counting problem, inductive recursion, traversal, decomposition and merging, greedy algorithm, complex dependency, Dijkstra algorithm, matching and cutting problem, difficult problem and its dilution are introduced. The book has exercises and reference materials at the end of each chapter, which provides readers with more convenience for self-examination and further stu)

文件列表:

Python-for-Finance-Second-Edition-master, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\.gitattributes, 378 , 2017-12-17
Python-for-Finance-Second-Edition-master\.gitignore, 649 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_01_assign_value.py, 291 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_02_import_math_module.py, 297 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_03_def_fv_funtion.py, 330 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_04_def_pv_funtion.py, 330 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_05_pv_f_with_help_comments.py, 702 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_06_if_else.py, 344 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_07_NPV_function.py, 400 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_08_NPV_Excel.py, 412 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_09_while_loop.py, 292 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_10_while_loop_2IRRs.py, 545 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_11_import_math_print_dir.py, 296 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_12_read_csv_file.py, 308 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_13_read_remote_data.py, 359 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_14_read_pickle_data.py, 337 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_15_if_condition.py, 318 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_16_logic_and_logic_or.py, 368 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_17_to_letter_grade.py, 480 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_18_many_useful_commands.py, 859 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_19_flatten_function.py, 397 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_20_matrix_dot_product.py, 439 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_21_read_ffMonthly_data.py, 529 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_22_data_output.py, 322 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_23_read_stock_data_and_save_it.py, 550 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_24_read_infile.py, 306 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_25_string_replacement.py, 329 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_01_time_value_of_money.py, 1100 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_02_pandas_1.py, 389 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_03_pandas_02, 145 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_04_interplate.py, 428 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_05_example_statsmodel_OLS.py, 412 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_06_generate_pickle.py, 385 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_07_statsmodels_OLS.py, 411 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_08_example_pandas.py, 403 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_09_bsCall.py, 442 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_99_interplate_not_working.py, 596 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter03, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter03\c3_01_write_your_own_financial_calculator.py, 733 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter03\c3_02_myPV_based_on_scipy.py, 797 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter03\c3_03_IRRs_funciton.py, 723 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter03\c3_04_appendix_E_more.py, 566 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_01_dir_pandas_data.py, 315 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_02_dir_pandas_data.py, 331 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_03_get_data_google.py, 358 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_04_dir_fin.py, 299 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_05_get_data.py, 351 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_06_read_local_csv_file.py, 332 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_07_first_one.py, 416 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_08_get_data_5lines.py, 454 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_09_get_return_only.py, 502 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_10_from_daily_ret_to_monthly_ret.py, 765 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_11_daily_ret_to_annual.py, 728 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_12_get_ffMonthly.py, 364 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_13_generate_ffMonthly_txt2.py, 844 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_14_download_one_jpg_image.py, 414 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_15_get_data_google_01.py, 345 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_16_ttest_2stocks.py, 677 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_17_print_png_image.py, 410 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_18_federal_fund_rate.py, 722 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_19_appendixA.py, 801 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_20_appendixB.py, 1690 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_21_appendixC.py, 1037 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_22_appendixD_intraday.py, 1075 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_23_read_csv_local_file.py, 321 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter05, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter05\p4f.cpython-35.pyc, 27833 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter05\spreadBasedOnCreditRating.pkl, 1873 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_01_learn_OLS.py, 583 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_02_random_OLS.py, 538 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_03_04_read_pickle.py, 310 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_03_random_OLS.py, 426 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_05_read_excel.py, 297 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_06_input_excel_02.py, 338 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_07_read_csv_file.py, 301 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_08_dailyReturn_4_annual.py, 1276 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_09_save_price_data_from_Google.py, 410 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_10_save_price_data_from_Yahoo.py, 504 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_11_save_csv_file.py, 513 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_12_save_a_binary_file.py, 467 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_13_save_Excel_file.py, 451 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_14_save_Excel_file_index_false.py, 512 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_15_string_manipulation.py, 884 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_16_string_manipulation2.py, 713 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_17_yanMonthly.py, 313 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_18_lag_and_forward.py, 396 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_19_lag_once.py, 439 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_20_save_simple_pickle.py, 375 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_21_yanMonthly_unique_securities.py, 392 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_22_sp500_return_lag_lead.py, 427 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_23_lag.py, 346 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_24_bible.py, 743 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_25_mention_canopy.py, 255 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_26_beta_good.py, 753 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_27_get_beta_good.py, 423 , 2017-12-17

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • BIC确定GMM聚类簇
    说明:  通过贝叶斯信息准则确定高斯混合聚类方法的聚类簇数(Determining the Cluster Number of GMM Clusters by BIC)
    2021-03-26 19:19:13下载
    积分:1
  • GA_RBF_SVM
    粒子群优化SVM参数 遗传算法优化SVM参数(Particle Swarm Optimization of SVM Parameters)
    2021-02-27 08:39:36下载
    积分:1
  • registzrsflashredundency
    混合基FFT算法的C语言实现,采用了多层子函数调用()
    2018-03-14 21:15:04下载
    积分:1
  • IABC_KMC_test_on_Iris_wine_glass
    克服K均值聚类算法易受初始聚类中心影响的缺点,优化K均值聚类算法(The K mean clustering algorithm is easily affected by the initial cluster center, and the K mean clustering algorithm is optimized.)
    2018-03-08 11:24:25下载
    积分:1
  • DUCCTMJ
    c++算法,常用得算法可以使你编程简单方便,放心使用,一个简单得hello程序()
    2017-12-02 22:34:46下载
    积分:1
  • 挖掘技术在公安犯罪行为分析中的应用研究
    数据挖掘在经侦项目中的应用,本文用到python中的社区划分算法(In the application of data mining in economic investigation projects, this paper uses community partition algorithm in Python.)
    2020-07-03 08:00:02下载
    积分:1
  • 371805
    实现了自动生成随机数,对于 C仿真有很大的帮助()
    2018-02-05 09:30:53下载
    积分:1
  • 算法图解.pdf
    说明:  本书示例丰富,图文并茂,以简明易懂的方式阐释了算法,旨在帮助程序员在日常项目中更好地利用 算法为软件开发助力。前三章介绍算法基础,包括二分查找、大 O 表示法、两种基本的数据结构以及递归 等。余下的篇幅将主要介绍应用广泛的算法,具体内容包括 :面对具体问题时的解决技巧,比如何时采用 贪婪算法或动态规划 ;散列表的应用 ;图算法 ;K 最近邻算法。 本书适合所有程序员、计算机专业相关师生以及对算法感兴趣的读者。(This book is rich in examples, illustrated and illustrated. It explains the algorithm in a concise and easy to understand way. It aims to help programmers make better use of algorithms to help software development in daily projects. The first three chapters introduce the basic algorithm, including binary search, big O representation, two basic data structures and recursion. The remaining space will mainly introduce the widely used algorithms, including: when facing specific problems, how to use greedy algorithm or dynamic programming; hash table application; graph algorithm; k-nearest neighbor algorithm. This book is suitable for all programmers, computer related teachers and students as well as interested in algorithm readers.)
    2020-11-19 16:10:19下载
    积分:1
  • lstm
    说明:  lstm比较火热,matlab2018B已经有相应的工具箱。(LSTM is relatively hot, matlab2018B already has the corresponding toolbox.)
    2021-01-05 10:38:54下载
    积分:1
  • 7028829
    r 双精度实型一维数组,存放Yule-Walker方程的元素r(0),r(1), r(p), p AR模型阶数, a AR模型系数a(()
    2017-12-04 08:07:41下载
    积分:1
  • 696518资源总数
  • 105554会员总数
  • 2今日下载