登录
首页 » Python » Python-for-Finance-Second-Edition-master

Python-for-Finance-Second-Edition-master

于 2018-11-24 发布 文件大小:267KB
0 267
下载积分: 1 下载次数: 4

代码说明:

  Python是一种面向对象、解释型计算机程序设计语言,其应用领域非常广泛,包括数据分析、自然语言处理、机器学习、科学计算以及推荐系统构建等。 本书用Python语言来讲解算法的分析和设计。本书主要关注经典的算法,但同时会为读者理解基本算法问题和解决问题打下很好的基础。(Python is an object-oriented, interpretive computer programming language. It has a wide range of applications, including data analysis, natural language processing, machine learning, scientific computing and recommendation system construction. This book uses Python language to explain the analysis and design of algorithms. This book focuses on classical algorithms, but at the same time it will lay a good foundation for readers to understand basic algorithms and solve problems. The book consists of 11 chapters. The tree, graph, counting problem, inductive recursion, traversal, decomposition and merging, greedy algorithm, complex dependency, Dijkstra algorithm, matching and cutting problem, difficult problem and its dilution are introduced. The book has exercises and reference materials at the end of each chapter, which provides readers with more convenience for self-examination and further stu)

文件列表:

Python-for-Finance-Second-Edition-master, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\.gitattributes, 378 , 2017-12-17
Python-for-Finance-Second-Edition-master\.gitignore, 649 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_01_assign_value.py, 291 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_02_import_math_module.py, 297 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_03_def_fv_funtion.py, 330 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_04_def_pv_funtion.py, 330 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_05_pv_f_with_help_comments.py, 702 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_06_if_else.py, 344 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_07_NPV_function.py, 400 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_08_NPV_Excel.py, 412 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_09_while_loop.py, 292 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_10_while_loop_2IRRs.py, 545 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_11_import_math_print_dir.py, 296 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_12_read_csv_file.py, 308 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_13_read_remote_data.py, 359 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_14_read_pickle_data.py, 337 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_15_if_condition.py, 318 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_16_logic_and_logic_or.py, 368 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_17_to_letter_grade.py, 480 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_18_many_useful_commands.py, 859 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_19_flatten_function.py, 397 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_20_matrix_dot_product.py, 439 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_21_read_ffMonthly_data.py, 529 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_22_data_output.py, 322 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_23_read_stock_data_and_save_it.py, 550 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_24_read_infile.py, 306 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_25_string_replacement.py, 329 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_01_time_value_of_money.py, 1100 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_02_pandas_1.py, 389 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_03_pandas_02, 145 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_04_interplate.py, 428 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_05_example_statsmodel_OLS.py, 412 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_06_generate_pickle.py, 385 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_07_statsmodels_OLS.py, 411 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_08_example_pandas.py, 403 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_09_bsCall.py, 442 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_99_interplate_not_working.py, 596 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter03, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter03\c3_01_write_your_own_financial_calculator.py, 733 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter03\c3_02_myPV_based_on_scipy.py, 797 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter03\c3_03_IRRs_funciton.py, 723 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter03\c3_04_appendix_E_more.py, 566 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_01_dir_pandas_data.py, 315 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_02_dir_pandas_data.py, 331 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_03_get_data_google.py, 358 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_04_dir_fin.py, 299 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_05_get_data.py, 351 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_06_read_local_csv_file.py, 332 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_07_first_one.py, 416 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_08_get_data_5lines.py, 454 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_09_get_return_only.py, 502 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_10_from_daily_ret_to_monthly_ret.py, 765 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_11_daily_ret_to_annual.py, 728 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_12_get_ffMonthly.py, 364 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_13_generate_ffMonthly_txt2.py, 844 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_14_download_one_jpg_image.py, 414 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_15_get_data_google_01.py, 345 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_16_ttest_2stocks.py, 677 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_17_print_png_image.py, 410 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_18_federal_fund_rate.py, 722 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_19_appendixA.py, 801 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_20_appendixB.py, 1690 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_21_appendixC.py, 1037 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_22_appendixD_intraday.py, 1075 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_23_read_csv_local_file.py, 321 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter05, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter05\p4f.cpython-35.pyc, 27833 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter05\spreadBasedOnCreditRating.pkl, 1873 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_01_learn_OLS.py, 583 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_02_random_OLS.py, 538 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_03_04_read_pickle.py, 310 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_03_random_OLS.py, 426 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_05_read_excel.py, 297 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_06_input_excel_02.py, 338 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_07_read_csv_file.py, 301 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_08_dailyReturn_4_annual.py, 1276 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_09_save_price_data_from_Google.py, 410 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_10_save_price_data_from_Yahoo.py, 504 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_11_save_csv_file.py, 513 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_12_save_a_binary_file.py, 467 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_13_save_Excel_file.py, 451 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_14_save_Excel_file_index_false.py, 512 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_15_string_manipulation.py, 884 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_16_string_manipulation2.py, 713 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_17_yanMonthly.py, 313 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_18_lag_and_forward.py, 396 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_19_lag_once.py, 439 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_20_save_simple_pickle.py, 375 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_21_yanMonthly_unique_securities.py, 392 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_22_sp500_return_lag_lead.py, 427 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_23_lag.py, 346 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_24_bible.py, 743 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_25_mention_canopy.py, 255 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_26_beta_good.py, 753 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_27_get_beta_good.py, 423 , 2017-12-17

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • czllection-normal
    以组合大视场星敏感器的卫星自主导航方法为例,设计改进的广义卡尔曼滤波算法,通过仿真,可以看出该算法对减小采样周期所带来的轨()
    2017-11-28 23:02:32下载
    积分:1
  • urgvide
    设计一个校园导游咨询程序,为来访的客人提供学校最短路径信息查询服务(Design a campus tour guide consultation program to provide the shortest path information inquiry service for visitors)
    2018-11-22 05:27:07下载
    积分:1
  • python疫情可视化
    说明:  通过时事数据可视化系统,可以清楚地了解全球疫情分布的状况以及密度,以便做出相应的对策(Through the current affairs data visualization system, it is possible to clearly understand the distribution and density of the global epidemic in order to make corresponding countermeasures)
    2021-03-05 10:19:31下载
    积分:1
  • 从零开始学Python网络爬虫源代码+教学PPT
    《从零开始学爬虫》的配套资料(PPT和源码)("Learning Reptiles from Zero" (PPT and Source))
    2019-03-18 22:06:06下载
    积分:1
  • ChineseSegmentUsingHashTable
    说明:  用python实现双字哈希字典,可用于中文分词(Using Python to realize double-character hash dictionary, which can be used for Chinese word segmentation)
    2019-04-20 23:09:29下载
    积分:1
  • bostorder
    此为人工智能中的简单遗传算法的实现,使用的开发工具为c#(This is the implementation of simple genetic algorithm in artificial intelligence. The development tool used is c#)
    2018-11-12 15:11:41下载
    积分:1
  • Python for Data Analysis
    利用python进行数据分析,英文书籍,从pandas库的数据分析工具开始利用高性能工具对数据进行加载、清理、转换、合并以及重塑;利用matpIotlib创建散点图以及静态或交互式的可视化结果;利用pandas的groupby功能对数据集进行切片、切块和汇总操作;处理各种各样的时间序列数据。(Starting from the data analysis tools of pandas database, high performance tools are used to load, clean, transform, merge and remodel data; scatter plots and static or interactive visualization results are created by matpIotlib; data sets are sliced, sliced and aggregated by pandas group by function; and various operations are processed. Time series data.)
    2020-06-16 03:20:01下载
    积分:1
  • 金属融化问题
    南开大学  金属融化问题  辛运帏老师  C++实现  含测试样例
    2022-05-17 21:26:23下载
    积分:1
  • 整型的加减乘C实现
    本程序主要是针对超大整型数据的基础加、减、乘运算,运算位数可达10000位,同时也支持使用者进行修改扩展至更大位数
    2023-08-28 18:15:03下载
    积分:1
  • python-data-structure
    Python 数据结构,英文版Python 数据结构,英文版Python 数据结构,英文版(Python data structure is introduced, the English versionPython data structure is introduced, the English versionPython data structure is introduced, the English versionPython data structure is introduced, the English version)
    2013-08-12 10:32:30下载
    积分:1
  • 696516资源总数
  • 106442会员总数
  • 11今日下载