登录
首页 » Python » Python-for-Finance-Second-Edition-master

Python-for-Finance-Second-Edition-master

于 2018-11-24 发布 文件大小:267KB
0 246
下载积分: 1 下载次数: 4

代码说明:

  Python是一种面向对象、解释型计算机程序设计语言,其应用领域非常广泛,包括数据分析、自然语言处理、机器学习、科学计算以及推荐系统构建等。 本书用Python语言来讲解算法的分析和设计。本书主要关注经典的算法,但同时会为读者理解基本算法问题和解决问题打下很好的基础。(Python is an object-oriented, interpretive computer programming language. It has a wide range of applications, including data analysis, natural language processing, machine learning, scientific computing and recommendation system construction. This book uses Python language to explain the analysis and design of algorithms. This book focuses on classical algorithms, but at the same time it will lay a good foundation for readers to understand basic algorithms and solve problems. The book consists of 11 chapters. The tree, graph, counting problem, inductive recursion, traversal, decomposition and merging, greedy algorithm, complex dependency, Dijkstra algorithm, matching and cutting problem, difficult problem and its dilution are introduced. The book has exercises and reference materials at the end of each chapter, which provides readers with more convenience for self-examination and further stu)

文件列表:

Python-for-Finance-Second-Edition-master, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\.gitattributes, 378 , 2017-12-17
Python-for-Finance-Second-Edition-master\.gitignore, 649 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_01_assign_value.py, 291 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_02_import_math_module.py, 297 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_03_def_fv_funtion.py, 330 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_04_def_pv_funtion.py, 330 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_05_pv_f_with_help_comments.py, 702 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_06_if_else.py, 344 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_07_NPV_function.py, 400 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_08_NPV_Excel.py, 412 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_09_while_loop.py, 292 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_10_while_loop_2IRRs.py, 545 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_11_import_math_print_dir.py, 296 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_12_read_csv_file.py, 308 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_13_read_remote_data.py, 359 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_14_read_pickle_data.py, 337 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_15_if_condition.py, 318 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_16_logic_and_logic_or.py, 368 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_17_to_letter_grade.py, 480 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_18_many_useful_commands.py, 859 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_19_flatten_function.py, 397 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_20_matrix_dot_product.py, 439 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_21_read_ffMonthly_data.py, 529 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_22_data_output.py, 322 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_23_read_stock_data_and_save_it.py, 550 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_24_read_infile.py, 306 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_25_string_replacement.py, 329 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_01_time_value_of_money.py, 1100 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_02_pandas_1.py, 389 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_03_pandas_02, 145 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_04_interplate.py, 428 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_05_example_statsmodel_OLS.py, 412 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_06_generate_pickle.py, 385 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_07_statsmodels_OLS.py, 411 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_08_example_pandas.py, 403 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_09_bsCall.py, 442 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_99_interplate_not_working.py, 596 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter03, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter03\c3_01_write_your_own_financial_calculator.py, 733 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter03\c3_02_myPV_based_on_scipy.py, 797 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter03\c3_03_IRRs_funciton.py, 723 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter03\c3_04_appendix_E_more.py, 566 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_01_dir_pandas_data.py, 315 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_02_dir_pandas_data.py, 331 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_03_get_data_google.py, 358 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_04_dir_fin.py, 299 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_05_get_data.py, 351 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_06_read_local_csv_file.py, 332 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_07_first_one.py, 416 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_08_get_data_5lines.py, 454 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_09_get_return_only.py, 502 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_10_from_daily_ret_to_monthly_ret.py, 765 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_11_daily_ret_to_annual.py, 728 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_12_get_ffMonthly.py, 364 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_13_generate_ffMonthly_txt2.py, 844 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_14_download_one_jpg_image.py, 414 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_15_get_data_google_01.py, 345 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_16_ttest_2stocks.py, 677 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_17_print_png_image.py, 410 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_18_federal_fund_rate.py, 722 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_19_appendixA.py, 801 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_20_appendixB.py, 1690 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_21_appendixC.py, 1037 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_22_appendixD_intraday.py, 1075 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_23_read_csv_local_file.py, 321 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter05, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter05\p4f.cpython-35.pyc, 27833 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter05\spreadBasedOnCreditRating.pkl, 1873 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_01_learn_OLS.py, 583 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_02_random_OLS.py, 538 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_03_04_read_pickle.py, 310 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_03_random_OLS.py, 426 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_05_read_excel.py, 297 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_06_input_excel_02.py, 338 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_07_read_csv_file.py, 301 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_08_dailyReturn_4_annual.py, 1276 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_09_save_price_data_from_Google.py, 410 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_10_save_price_data_from_Yahoo.py, 504 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_11_save_csv_file.py, 513 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_12_save_a_binary_file.py, 467 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_13_save_Excel_file.py, 451 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_14_save_Excel_file_index_false.py, 512 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_15_string_manipulation.py, 884 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_16_string_manipulation2.py, 713 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_17_yanMonthly.py, 313 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_18_lag_and_forward.py, 396 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_19_lag_once.py, 439 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_20_save_simple_pickle.py, 375 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_21_yanMonthly_unique_securities.py, 392 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_22_sp500_return_lag_lead.py, 427 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_23_lag.py, 346 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_24_bible.py, 743 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_25_mention_canopy.py, 255 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_26_beta_good.py, 753 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_27_get_beta_good.py, 423 , 2017-12-17

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 算法图解.pdf
    说明:  本书示例丰富,图文并茂,以简明易懂的方式阐释了算法,旨在帮助程序员在日常项目中更好地利用 算法为软件开发助力。前三章介绍算法基础,包括二分查找、大 O 表示法、两种基本的数据结构以及递归 等。余下的篇幅将主要介绍应用广泛的算法,具体内容包括 :面对具体问题时的解决技巧,比如何时采用 贪婪算法或动态规划 ;散列表的应用 ;图算法 ;K 最近邻算法。 本书适合所有程序员、计算机专业相关师生以及对算法感兴趣的读者。(This book is rich in examples, illustrated and illustrated. It explains the algorithm in a concise and easy to understand way. It aims to help programmers make better use of algorithms to help software development in daily projects. The first three chapters introduce the basic algorithm, including binary search, big O representation, two basic data structures and recursion. The remaining space will mainly introduce the widely used algorithms, including: when facing specific problems, how to use greedy algorithm or dynamic programming; hash table application; graph algorithm; k-nearest neighbor algorithm. This book is suitable for all programmers, computer related teachers and students as well as interested in algorithm readers.)
    2020-11-19 16:10:19下载
    积分:1
  • jptimized
    超长整形数据计算程序,达到128位,同时计算速度进行了优化(The calculation program of super-long shaping data reaches 128 bits, and the calculation speed is optimized at the same time.)
    2018-08-04 16:51:49下载
    积分:1
  • test_lstm
    说明:  简单的LSTM进行预测,附带数据集方便测试(simple test of LSTM is used for prediction , and related datasets is attached in the file.)
    2020-08-30 16:28:10下载
    积分:1
  • ZookeeperClient
    zookper节点搭建、持久节点、临时节点创建以及动态上下线(Construction of Zookper Node and Dynamic Up and Down)
    2020-06-20 10:00:01下载
    积分:1
  • urgvide
    设计一个校园导游咨询程序,为来访的客人提供学校最短路径信息查询服务(Design a campus tour guide consultation program to provide the shortest path information inquiry service for visitors)
    2018-11-22 05:27:07下载
    积分:1
  • 机器学习实战
    说明:  机器学习实战中文英文pdf+数据集+代码(Practice of machine learning)
    2021-02-21 23:11:22下载
    积分:1
  • StockPricePrediction-master
    说明:  python深度学习股票分析框架,就这么多了(python learning stock)
    2019-06-18 12:19:59下载
    积分:1
  • python-knn
    主要利用Python软件,利用KNN算法对垃圾邮件进行分类(This paper mainly uses Python software to classify spam mail by using KNN algorithm)
    2017-11-10 15:46:56下载
    积分:1
  • YCYB6
    线性拟合和二次拟合函数 pdg正交多项式作最小二乘拟合(Least Square fitting of Linear fitting and Quadratic fitting function pdg orthogonal polynomial)
    2018-09-05 21:15:07下载
    积分:1
  • ChineseSegmentUsingHashTable
    说明:  用python实现双字哈希字典,可用于中文分词(Using Python to realize double-character hash dictionary, which can be used for Chinese word segmentation)
    2019-04-20 23:09:29下载
    积分:1
  • 696518资源总数
  • 105873会员总数
  • 12今日下载