登录
首页 » Python » Python-for-Finance-Second-Edition-master

Python-for-Finance-Second-Edition-master

于 2018-11-24 发布 文件大小:267KB
0 258
下载积分: 1 下载次数: 4

代码说明:

  Python是一种面向对象、解释型计算机程序设计语言,其应用领域非常广泛,包括数据分析、自然语言处理、机器学习、科学计算以及推荐系统构建等。 本书用Python语言来讲解算法的分析和设计。本书主要关注经典的算法,但同时会为读者理解基本算法问题和解决问题打下很好的基础。(Python is an object-oriented, interpretive computer programming language. It has a wide range of applications, including data analysis, natural language processing, machine learning, scientific computing and recommendation system construction. This book uses Python language to explain the analysis and design of algorithms. This book focuses on classical algorithms, but at the same time it will lay a good foundation for readers to understand basic algorithms and solve problems. The book consists of 11 chapters. The tree, graph, counting problem, inductive recursion, traversal, decomposition and merging, greedy algorithm, complex dependency, Dijkstra algorithm, matching and cutting problem, difficult problem and its dilution are introduced. The book has exercises and reference materials at the end of each chapter, which provides readers with more convenience for self-examination and further stu)

文件列表:

Python-for-Finance-Second-Edition-master, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\.gitattributes, 378 , 2017-12-17
Python-for-Finance-Second-Edition-master\.gitignore, 649 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_01_assign_value.py, 291 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_02_import_math_module.py, 297 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_03_def_fv_funtion.py, 330 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_04_def_pv_funtion.py, 330 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_05_pv_f_with_help_comments.py, 702 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_06_if_else.py, 344 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_07_NPV_function.py, 400 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_08_NPV_Excel.py, 412 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_09_while_loop.py, 292 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_10_while_loop_2IRRs.py, 545 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_11_import_math_print_dir.py, 296 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_12_read_csv_file.py, 308 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_13_read_remote_data.py, 359 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_14_read_pickle_data.py, 337 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_15_if_condition.py, 318 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_16_logic_and_logic_or.py, 368 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_17_to_letter_grade.py, 480 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_18_many_useful_commands.py, 859 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_19_flatten_function.py, 397 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_20_matrix_dot_product.py, 439 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_21_read_ffMonthly_data.py, 529 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_22_data_output.py, 322 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_23_read_stock_data_and_save_it.py, 550 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_24_read_infile.py, 306 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter01\c1_25_string_replacement.py, 329 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_01_time_value_of_money.py, 1100 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_02_pandas_1.py, 389 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_03_pandas_02, 145 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_04_interplate.py, 428 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_05_example_statsmodel_OLS.py, 412 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_06_generate_pickle.py, 385 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_07_statsmodels_OLS.py, 411 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_08_example_pandas.py, 403 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_09_bsCall.py, 442 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter02\c2_99_interplate_not_working.py, 596 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter03, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter03\c3_01_write_your_own_financial_calculator.py, 733 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter03\c3_02_myPV_based_on_scipy.py, 797 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter03\c3_03_IRRs_funciton.py, 723 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter03\c3_04_appendix_E_more.py, 566 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_01_dir_pandas_data.py, 315 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_02_dir_pandas_data.py, 331 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_03_get_data_google.py, 358 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_04_dir_fin.py, 299 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_05_get_data.py, 351 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_06_read_local_csv_file.py, 332 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_07_first_one.py, 416 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_08_get_data_5lines.py, 454 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_09_get_return_only.py, 502 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_10_from_daily_ret_to_monthly_ret.py, 765 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_11_daily_ret_to_annual.py, 728 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_12_get_ffMonthly.py, 364 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_13_generate_ffMonthly_txt2.py, 844 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_14_download_one_jpg_image.py, 414 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_15_get_data_google_01.py, 345 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_16_ttest_2stocks.py, 677 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_17_print_png_image.py, 410 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_18_federal_fund_rate.py, 722 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_19_appendixA.py, 801 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_20_appendixB.py, 1690 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_21_appendixC.py, 1037 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_22_appendixD_intraday.py, 1075 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter04\c4_23_read_csv_local_file.py, 321 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter05, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter05\p4f.cpython-35.pyc, 27833 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter05\spreadBasedOnCreditRating.pkl, 1873 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06, 0 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_01_learn_OLS.py, 583 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_02_random_OLS.py, 538 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_03_04_read_pickle.py, 310 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_03_random_OLS.py, 426 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_05_read_excel.py, 297 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_06_input_excel_02.py, 338 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_07_read_csv_file.py, 301 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_08_dailyReturn_4_annual.py, 1276 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_09_save_price_data_from_Google.py, 410 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_10_save_price_data_from_Yahoo.py, 504 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_11_save_csv_file.py, 513 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_12_save_a_binary_file.py, 467 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_13_save_Excel_file.py, 451 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_14_save_Excel_file_index_false.py, 512 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_15_string_manipulation.py, 884 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_16_string_manipulation2.py, 713 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_17_yanMonthly.py, 313 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_18_lag_and_forward.py, 396 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_19_lag_once.py, 439 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_20_save_simple_pickle.py, 375 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_21_yanMonthly_unique_securities.py, 392 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_22_sp500_return_lag_lead.py, 427 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_23_lag.py, 346 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_24_bible.py, 743 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_25_mention_canopy.py, 255 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_26_beta_good.py, 753 , 2017-12-17
Python-for-Finance-Second-Edition-master\Chapter06\c6_27_get_beta_good.py, 423 , 2017-12-17

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • dulwqcommunication
    拷贝和排序,本程序能实现A[N]与B[M],其中这两个数组都按升序排列,合并为一个C[M+N]数组,且按升序排列,()
    2018-03-14 14:23:09下载
    积分:1
  • StockPricePrediction-master
    python深度学习股票分析框架,就这么多了(python learning stock)
    2019-06-18 12:19:59下载
    积分:1
  • 算法与结构(python版)(北内部教材)
    算法与数据结构,python版本的,北大内部教材(Algorithms and Data Structures, Python Version, Peking University Internal Textbook)
    2019-04-11 16:59:53下载
    积分:1
  • GA_RBF_SVM
    粒子群优化SVM参数 遗传算法优化SVM参数(Particle Swarm Optimization of SVM Parameters)
    2021-02-27 08:39:36下载
    积分:1
  • speech noise reduction
    使用python实现谱减法对语音的降噪功能,代码包括语音的读取、降噪、输出保存(Spectral subtraction speech noise reduction python code)
    2018-06-27 17:22:04下载
    积分:1
  • advantages
    关于粒子滤波的仿真程序,比较了粒子滤波和卡尔曼滤波的优缺点(On the simulation program of particle filter, the advantages and disadvantages of particle filter and Kalman filter are compared.)
    2018-11-14 16:19:23下载
    积分:1
  • oeguggingsuser
    poj题目2949平板着色问题,动态规划经典题目()
    2017-12-04 07:50:09下载
    积分:1
  • AlgorithmsByPython-master
    一些常见算法实现和牛客网以及leetcode刷题(Some Common Algorithms Implementing and Title Brushing)
    2018-12-24 16:03:44下载
    积分:1
  • vdlayile-directive-functionality
    数据挖掘中的聚合层次聚类算法,有完整的注释()
    2018-05-24 14:39:07下载
    积分:1
  • MF-DFA-master
    多重分形去趋势波动分析法,用于不同时间序列的重分形交叉相关性分析。(Multifractal detrended fluctuation analysis)
    2018-09-06 14:29:01下载
    积分:1
  • 696518资源总数
  • 106174会员总数
  • 31今日下载