登录
首页 » Python » 机器学习实战

机器学习实战

于 2021-02-21 发布
0 419
下载积分: 1 下载次数: 4

代码说明:

说明:  机器学习实战中文英文pdf+数据集+代码(Practice of machine learning)

文件列表:

Machine-Learning-in-Action-master, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.1.py, 2547 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.1.py, 1955 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.2.py, 6095 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.3.py, 2875 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.4.py, 5630 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.5.py, 5337 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.3.2.py, 3022 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.2.1-1.py, 2296 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.2.1-2.py, 4861 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.2.2.py, 6980 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.3.py, 13069 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.4.py, 8011 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.5.1.py, 626 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.5.2.py, 518 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.6.2-1.py, 1365 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.6.2-2.py, 1786 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.6.2-3.py, 2320 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.7.1.py, 2622 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.7.2.py, 4272 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.7.3.py, 4387 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.8.1.py, 1801 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.8.2.py, 9564 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.1.py, 1558 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.2-1.py, 3677 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.2-2.py, 5510 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.2-3.py, 7586 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.2-4.py, 7299 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.1.py, 2606 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.2.py, 2460 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.3.py, 4086 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.4.py, 4297 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.5.py, 6763 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.5.2-1.py, 3270 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.5.2-2.py, 3076 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.6.py, 1353 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.3.py, 7623 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.4.py, 11636 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.5.1.py, 1591 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.5.2.py, 13616 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.6.py, 170 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.7.py, 2705 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.3.1.py, 1506 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.3.2.py, 3697 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.4.1.py, 5141 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.4.2.py, 6479 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.5.py, 6291 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.6.py, 1440 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.8.py, 7149 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.2.1.py, 1513 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.2.2.py, 2170 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.2.3.py, 1589 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.3.py, 4174 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.4.py, 4611 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.5.1.py, 3257 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.5.3.py, 4046 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.6.1.py, 3130 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.6.2-1.py, 4908 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.6.2-2.py, 8240 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.6.2-3.py, 6034 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.7.py, 3473 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.3.py, 802 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.1.py, 1205 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.2.py, 3493 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.3.py, 4324 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.4.py, 1429 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.5.py, 4323 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.5.1-1.py, 1436 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.5.1-2.py, 4291 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.5.2.py, 7136 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.6.1.py, 1435 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.6.2.py, 5049 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.7.1.py, 1450 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.7.2.py, 6215 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.8.py, 2908 , 2020-02-05
Machine-Learning-in-Action-master\Machine Learning in Action.pdf, 6896910 , 2020-02-05
Machine-Learning-in-Action-master\README.md, 3285 , 2020-02-05
Machine-Learning-in-Action-master\机器学习实战.pdf, 10671473 , 2020-02-05
Machine-Learning-in-Action-master\机器学习实战总目录.md, 2431 , 2020-02-05
Machine-Learning-in-Action-master\机器学习实战数据集.zip, 17370427 , 2020-02-05

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • HMM-homework
    说明:  隐马尔科夫实现,包含forward-hmm, Viterbi-hmm, Baum-Welch-hmm(Hidden Markov implementation, including forward-hmm, Viterbi-hmm, Baum-Welch-hmm)
    2019-04-26 17:02:43下载
    积分:1
  • 技术在公安犯罪行为分析中的应用研究
    数据挖掘在经侦项目中的应用,本文用到python中的社区划分算法(In the application of data mining in economic investigation projects, this paper uses community partition algorithm in Python.)
    2020-07-03 08:00:02下载
    积分:1
  • TurbulentWindGenerator
    三维风场模拟.利用Kaimal spectrum结合FFT进行风场模拟,生成风速时程得进行必要参数的定义。(3D Turbulent Wind Generation。 Generation of three-dimensional turbulent wind fields, by employing a Kaimal spectrum and IEC-based coherence function. )
    2017-02-28 11:35:25下载
    积分:1
  • BIC确定GMM聚类簇
    通过贝叶斯信息准则确定高斯混合聚类方法的聚类簇数(Determining the Cluster Number of GMM Clusters by BIC)
    2021-03-26 19:19:13下载
    积分:1
  • House_price
    主要是对二手房房价的因变量房价和其相关的因变量之间的关系进行简单的描述统计分析(Mainly for the second-hand house price dependent variable housing prices and its related variables of the relationship between the simple description of statistical analysis)
    2017-11-10 15:40:51下载
    积分:1
  • 0406遗传算法优化神经网络
    说明:  基于股票数据的神经网络,关于结算的预测,通过遗传算法加以改进(Based on the neural network of stock data, the prediction of settlement is improved by genetic algorithm)
    2020-04-26 21:54:01下载
    积分:1
  • Wavelet-Packet
    基于混合信号的小波包分解技术在故障特征提取中的应用(Feature Extraction Using Multisignal Wavelet Packet Decomposition)
    2017-04-15 15:49:06下载
    积分:1
  • Ecalt算法
    Eclat算法是一种深度优先算法,采用垂直数据表示形式,在概念格理论的基础上利用基于前缀的等价关系将搜索空间(概念格)划分为较小的子空间(子概念格)。Eclat算法采用方法二计算支持度。对候选k项集进行支持度计算时,不需再次扫描数据库,仅在一次扫描数据库后得到每个1项集的支持度,而候选k项集的支持度就是在对k-1项集进行交集操作后得到的该k项集Tidset中元素的个数。本算法利用diffset数据格式实现。
    2022-03-02 17:06:13下载
    积分:1
  • PCA
    说明:  一个用python实现的PCA算法,并且给了简易素材(A PCA algorithm implemented in python, and gave a simple material)
    2020-08-23 14:38:17下载
    积分:1
  • 粗糙集
    粗糙集在进行属性约简时需要求其正域,此为求正域程序(Rough Set for Positive Domain)
    2020-06-19 09:00:06下载
    积分:1
  • 696518资源总数
  • 105714会员总数
  • 27今日下载