登录
首页 » Python » 机器学习实战

机器学习实战

于 2021-02-21 发布
0 492
下载积分: 1 下载次数: 4

代码说明:

说明:  机器学习实战中文英文pdf+数据集+代码(Practice of machine learning)

文件列表:

Machine-Learning-in-Action-master, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.1.py, 2547 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.1.py, 1955 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.2.py, 6095 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.3.py, 2875 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.4.py, 5630 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.5.py, 5337 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.3.2.py, 3022 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.2.1-1.py, 2296 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.2.1-2.py, 4861 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.2.2.py, 6980 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.3.py, 13069 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.4.py, 8011 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.5.1.py, 626 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.5.2.py, 518 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.6.2-1.py, 1365 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.6.2-2.py, 1786 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.6.2-3.py, 2320 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.7.1.py, 2622 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.7.2.py, 4272 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.7.3.py, 4387 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.8.1.py, 1801 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.8.2.py, 9564 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.1.py, 1558 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.2-1.py, 3677 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.2-2.py, 5510 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.2-3.py, 7586 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.2-4.py, 7299 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.1.py, 2606 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.2.py, 2460 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.3.py, 4086 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.4.py, 4297 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.5.py, 6763 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.5.2-1.py, 3270 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.5.2-2.py, 3076 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.6.py, 1353 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.3.py, 7623 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.4.py, 11636 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.5.1.py, 1591 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.5.2.py, 13616 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.6.py, 170 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.7.py, 2705 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.3.1.py, 1506 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.3.2.py, 3697 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.4.1.py, 5141 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.4.2.py, 6479 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.5.py, 6291 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.6.py, 1440 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.8.py, 7149 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.2.1.py, 1513 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.2.2.py, 2170 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.2.3.py, 1589 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.3.py, 4174 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.4.py, 4611 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.5.1.py, 3257 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.5.3.py, 4046 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.6.1.py, 3130 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.6.2-1.py, 4908 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.6.2-2.py, 8240 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.6.2-3.py, 6034 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.7.py, 3473 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.3.py, 802 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.1.py, 1205 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.2.py, 3493 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.3.py, 4324 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.4.py, 1429 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.5.py, 4323 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.5.1-1.py, 1436 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.5.1-2.py, 4291 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.5.2.py, 7136 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.6.1.py, 1435 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.6.2.py, 5049 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.7.1.py, 1450 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.7.2.py, 6215 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.8.py, 2908 , 2020-02-05
Machine-Learning-in-Action-master\Machine Learning in Action.pdf, 6896910 , 2020-02-05
Machine-Learning-in-Action-master\README.md, 3285 , 2020-02-05
Machine-Learning-in-Action-master\机器学习实战.pdf, 10671473 , 2020-02-05
Machine-Learning-in-Action-master\机器学习实战总目录.md, 2431 , 2020-02-05
Machine-Learning-in-Action-master\机器学习实战数据集.zip, 17370427 , 2020-02-05

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • PCA
    说明:  python PCA算法原理推导,及源代码实现,并基于PCA算法实现图片压缩,附pdf文件说明(Python PCA algorithm principle derivation, and source code implementation, and based on PCA algorithm to achieve image compression, with PDF file description)
    2021-02-09 12:04:01下载
    积分:1
  • House_price
    主要是对二手房房价的因变量房价和其相关的因变量之间的关系进行简单的描述统计分析(Mainly for the second-hand house price dependent variable housing prices and its related variables of the relationship between the simple description of statistical analysis)
    2017-11-10 15:40:51下载
    积分:1
  • arima
    时间序列法,通过过去数据来建立相应模型来预测未来数据(Time series, using past data to establish corresponding models to predict future data)
    2018-03-08 22:01:43下载
    积分:1
  • Python for Data Analysis
    利用python进行数据分析,英文书籍,从pandas库的数据分析工具开始利用高性能工具对数据进行加载、清理、转换、合并以及重塑;利用matpIotlib创建散点图以及静态或交互式的可视化结果;利用pandas的groupby功能对数据集进行切片、切块和汇总操作;处理各种各样的时间序列数据。(Starting from the data analysis tools of pandas database, high performance tools are used to load, clean, transform, merge and remodel data; scatter plots and static or interactive visualization results are created by matpIotlib; data sets are sliced, sliced and aggregated by pandas group by function; and various operations are processed. Time series data.)
    2020-06-16 03:20:01下载
    积分:1
  • znsbudk
    人工智能中,经典的基于小波变换的图像处理和图像去噪的解决办法,可下载后观摩使用(In artificial intelligence, the classical image processing and image denoising based on wavelet transform can be downloaded and used)
    2018-09-04 02:06:36下载
    积分:1
  • rdqern
    脉动风速功率谱估计,并与标准风谱进行对比()
    2018-05-25 15:20:02下载
    积分:1
  • ltlk4
    FIR Filter Design This chapter treats the design of linear-pha()
    2018-02-07 09:12:27下载
    积分:1
  • WDMAP6
    bp网络实现认知无线电的检测和预测,从而达到了对频谱的分配(Bp network realizes the detection and prediction of cognitive radio, thus achieving the spectrum allocation.)
    2018-09-06 15:06:37下载
    积分:1
  • 粗糙集
    说明:  粗糙集在进行属性约简时需要求其正域,此为求正域程序(Rough Set for Positive Domain)
    2020-06-19 09:00:06下载
    积分:1
  • 1595175
    动画演示多种排序算法,包括冒泡排序,选择排序,插入排序,快速排序等,()
    2018-03-13 23:48:48下载
    积分:1
  • 696516资源总数
  • 106457会员总数
  • 15今日下载