登录
首页 » Python » 机器学习实战

机器学习实战

于 2021-02-21 发布
0 449
下载积分: 1 下载次数: 4

代码说明:

说明:  机器学习实战中文英文pdf+数据集+代码(Practice of machine learning)

文件列表:

Machine-Learning-in-Action-master, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.1.py, 2547 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.1.py, 1955 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.2.py, 6095 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.3.py, 2875 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.4.py, 5630 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.5.py, 5337 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.3.2.py, 3022 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.2.1-1.py, 2296 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.2.1-2.py, 4861 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.2.2.py, 6980 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.3.py, 13069 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.4.py, 8011 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.5.1.py, 626 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.5.2.py, 518 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.6.2-1.py, 1365 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.6.2-2.py, 1786 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.6.2-3.py, 2320 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.7.1.py, 2622 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.7.2.py, 4272 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.7.3.py, 4387 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.8.1.py, 1801 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.8.2.py, 9564 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.1.py, 1558 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.2-1.py, 3677 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.2-2.py, 5510 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.2-3.py, 7586 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.2-4.py, 7299 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.1.py, 2606 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.2.py, 2460 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.3.py, 4086 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.4.py, 4297 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.5.py, 6763 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.5.2-1.py, 3270 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.5.2-2.py, 3076 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.6.py, 1353 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.3.py, 7623 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.4.py, 11636 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.5.1.py, 1591 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.5.2.py, 13616 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.6.py, 170 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.7.py, 2705 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.3.1.py, 1506 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.3.2.py, 3697 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.4.1.py, 5141 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.4.2.py, 6479 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.5.py, 6291 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.6.py, 1440 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.8.py, 7149 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.2.1.py, 1513 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.2.2.py, 2170 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.2.3.py, 1589 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.3.py, 4174 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.4.py, 4611 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.5.1.py, 3257 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.5.3.py, 4046 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.6.1.py, 3130 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.6.2-1.py, 4908 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.6.2-2.py, 8240 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.6.2-3.py, 6034 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.7.py, 3473 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.3.py, 802 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.1.py, 1205 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.2.py, 3493 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.3.py, 4324 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.4.py, 1429 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.5.py, 4323 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.5.1-1.py, 1436 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.5.1-2.py, 4291 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.5.2.py, 7136 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.6.1.py, 1435 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.6.2.py, 5049 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.7.1.py, 1450 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.7.2.py, 6215 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.8.py, 2908 , 2020-02-05
Machine-Learning-in-Action-master\Machine Learning in Action.pdf, 6896910 , 2020-02-05
Machine-Learning-in-Action-master\README.md, 3285 , 2020-02-05
Machine-Learning-in-Action-master\机器学习实战.pdf, 10671473 , 2020-02-05
Machine-Learning-in-Action-master\机器学习实战总目录.md, 2431 , 2020-02-05
Machine-Learning-in-Action-master\机器学习实战数据集.zip, 17370427 , 2020-02-05

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 0332545
    本问题是计算最长有序子序列的一个动态规划算法,效率为31MS()
    2018-05-28 10:14:57下载
    积分:1
  • YTCVI47
    徐士良《C常用算法程序集》第2版 第2部分()
    2018-02-05 12:36:49下载
    积分:1
  • Adaboost
    Python实现Adaboost算法,数据集为horseColic马疝气病数据集,准确率和sklearn库中的adaboost算法一样。(Python implementation adaboost algorithm, the data set is horseColic horse hernia disease data collection, accuracy and sklearn library adaboost the same algorithm.)
    2017-04-21 15:00:34下载
    积分:1
  • AP聚类算法和案例
    ap聚类算法实现三维数据点的分类,demo为案例(AP clustering algorithm realizes the classification of data points, demo as a case.)
    2020-11-26 11:49:31下载
    积分:1
  • GibbsLDA
    用Gibb Sampling 的方法对LDA的参数进行推断(LDA model with Gibbs Sampling for inference)
    2019-01-24 09:28:57下载
    积分:1
  • guanlianguize
    r语言中关联规则代码实现 运用arulesViz包和arules包中的apriori函数(Code Implementation of Association Rule)
    2019-01-24 15:39:51下载
    积分:1
  • 雷达matlab仿真,波束形成,角度测量,跟踪等等
    说明:  波形设计算法,阵列信号处理等相关知识的介绍仿真等(Introduction and Simulation of waveform design algorithm, array signal processing and other related knowledge)
    2021-02-19 15:09:44下载
    积分:1
  • 0262842
    請用星號( )排列出下列的 p箭 星號 D案,輸入 Y料 ne txt中的第一行為箭 的上下高度(必為奇數),第二行為 D案的總寬度()
    2018-05-28 18:54:24下载
    积分:1
  • CEAYDOC
    包含了01背包和非01背包两个程序!是我一次作业完成的,可以参考一下!()
    2017-12-05 09:01:53下载
    积分:1
  • 用matlab 实现了kmeans算法
    用matlab 实现了kmeans算法还附有评价指标计算(Matlab to achieve kmeans algorithm also attached to the evaluation index calculation)
    2020-06-19 04:40:01下载
    积分:1
  • 696518资源总数
  • 106005会员总数
  • 36今日下载