登录
首页 » Python » 机器学习实战

机器学习实战

于 2021-02-21 发布
0 461
下载积分: 1 下载次数: 4

代码说明:

说明:  机器学习实战中文英文pdf+数据集+代码(Practice of machine learning)

文件列表:

Machine-Learning-in-Action-master, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.1.py, 2547 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.1.py, 1955 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.2.py, 6095 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.3.py, 2875 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.4.py, 5630 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.5.py, 5337 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.3.2.py, 3022 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.2.1-1.py, 2296 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.2.1-2.py, 4861 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.2.2.py, 6980 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.3.py, 13069 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.4.py, 8011 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.5.1.py, 626 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.5.2.py, 518 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.6.2-1.py, 1365 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.6.2-2.py, 1786 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.6.2-3.py, 2320 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.7.1.py, 2622 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.7.2.py, 4272 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.7.3.py, 4387 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.8.1.py, 1801 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.8.2.py, 9564 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.1.py, 1558 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.2-1.py, 3677 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.2-2.py, 5510 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.2-3.py, 7586 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.2-4.py, 7299 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.1.py, 2606 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.2.py, 2460 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.3.py, 4086 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.4.py, 4297 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.5.py, 6763 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.5.2-1.py, 3270 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.5.2-2.py, 3076 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.6.py, 1353 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.3.py, 7623 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.4.py, 11636 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.5.1.py, 1591 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.5.2.py, 13616 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.6.py, 170 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.7.py, 2705 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.3.1.py, 1506 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.3.2.py, 3697 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.4.1.py, 5141 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.4.2.py, 6479 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.5.py, 6291 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.6.py, 1440 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.8.py, 7149 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.2.1.py, 1513 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.2.2.py, 2170 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.2.3.py, 1589 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.3.py, 4174 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.4.py, 4611 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.5.1.py, 3257 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.5.3.py, 4046 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.6.1.py, 3130 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.6.2-1.py, 4908 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.6.2-2.py, 8240 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.6.2-3.py, 6034 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.7.py, 3473 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.3.py, 802 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.1.py, 1205 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.2.py, 3493 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.3.py, 4324 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.4.py, 1429 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.5.py, 4323 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.5.1-1.py, 1436 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.5.1-2.py, 4291 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.5.2.py, 7136 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.6.1.py, 1435 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.6.2.py, 5049 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.7.1.py, 1450 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.7.2.py, 6215 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.8.py, 2908 , 2020-02-05
Machine-Learning-in-Action-master\Machine Learning in Action.pdf, 6896910 , 2020-02-05
Machine-Learning-in-Action-master\README.md, 3285 , 2020-02-05
Machine-Learning-in-Action-master\机器学习实战.pdf, 10671473 , 2020-02-05
Machine-Learning-in-Action-master\机器学习实战总目录.md, 2431 , 2020-02-05
Machine-Learning-in-Action-master\机器学习实战数据集.zip, 17370427 , 2020-02-05

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 频繁项集算法--FPGROWTH算法
    数据挖掘经典算法,频繁项集挖掘经典算法,FPGROWTH算法,源码中有详细说明
    2023-06-08 16:30:03下载
    积分:1
  • degreeor
    复杂网络聚类系数的matlab编程代码,将复杂网络存储为矩阵,再对其matLab编程,可得到度分布图(The MATLAB programming code of clustering coefficient of complex network is used to store complex network as matrix, and then matLab programming is used to get the degree distribution graph.)
    2018-05-23 05:28:45下载
    积分:1
  • 高效用项集算法--HMINE算法
    数据挖掘算法,高效用项集挖掘算法,加权频发项集挖掘算法,HMINE算法,源码中有详细注释
    2022-02-04 07:22:38下载
    积分:1
  • GAM
    主要利用R语言进行广义加法模型,进行回归预测(This paper mainly uses R language to carry on the generalized additive model, and carries on the regression forecast)
    2017-11-10 15:43:21下载
    积分:1
  • test_lstm
    说明:  简单的LSTM进行预测,附带数据集方便测试(simple test of LSTM is used for prediction , and related datasets is attached in the file.)
    2020-08-30 16:28:10下载
    积分:1
  • classification_toolbox
    说明:  多种基本分类训练,包括支持向量机,偏最小二乘,主成分分析和线性分析(A variety of basic classification training, including support vector machine, partial least squares, principal component analysis and linear analysis)
    2020-03-10 11:52:41下载
    积分:1
  • QB模型 神经网络
    说明:  从数据库获取车辆在一段时间内的所有行驶记录的相关数据,确定所需数据为GPS经纬度坐标和驾驶时长等,QB模型采用MDF的思想,其基本思想为:通过平均直接翻转距离函数定义两条轨迹之间的距离,两条轨迹需要具有相同的经纬度点数,具有相同点数的轨迹最大的优点是对轨迹距离成对计算,且相同轨迹之间具有更高的分辨率,对于轨迹聚类的结果有一定的优化。(Retrieved from the database cars all over a period of time, record the related data, determine the required data for the GPS latitude and longitude coordinates, and the driving time, QB model by adopting the idea of MDF, its basic idea is: flip directly by the average distance function definition of the distance between two trajectories, two tracks will have the same latitude and longitude points, and has the biggest advantages of the same points of trajectory track distance calculation in pairs, and has higher resolution, between the same trajectory for trajectory clustering results have certain optimization.)
    2020-06-23 08:00:01下载
    积分:1
  • 512810
    自己写的一个分形程序,支持动态编译表达式()
    2017-11-28 16:57:06下载
    积分:1
  • 粗糙集
    说明:  粗糙集在进行属性约简时需要求其正域,此为求正域程序(Rough Set for Positive Domain)
    2020-06-19 09:00:06下载
    积分:1
  • 从零开始学Python网络爬虫源代码+教学PPT
    《从零开始学爬虫》的配套资料(PPT和源码)("Learning Reptiles from Zero" (PPT and Source))
    2019-03-18 22:06:06下载
    积分:1
  • 696518资源总数
  • 106164会员总数
  • 18今日下载