登录
首页 » matlab » Codes_MandarKulkarni_DynamicTDDSelfbackhaul

Codes_MandarKulkarni_DynamicTDDSelfbackhaul

于 2019-03-22 发布
0 145
下载积分: 1 下载次数: 56

代码说明:

说明:  5G network with NOMA performance analysis

文件列表:

Codes_MandarKulkarni_DynamicTDDSelfbackhaul, 0 , 2018-05-23
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\.DS_Store, 6148 , 2016-12-16
__MACOSX, 0 , 2018-05-23
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul, 0 , 2018-05-23
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\._.DS_Store, 212 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations, 0 , 2018-05-23
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\createnetwork.m, 1956 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations, 0 , 2018-05-23
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\._createnetwork.m, 212 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\ScheduleUsers.m, 15778 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\._ScheduleUsers.m, 212 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\AssociateUEandSBS.m, 981 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\._AssociateUEandSBS.m, 268 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\computemetric.m, 9673 , 2016-10-21
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\._computemetric.m, 212 , 2016-10-21
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\computeperformance.m, 2782 , 2018-05-23
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\._computeperformance.m, 212 , 2018-05-23
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\plotAssociations.m, 1036 , 2016-04-11
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\._plotAssociations.m, 176 , 2016-04-11
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\createchannel.m, 3728 , 2016-10-27
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\._createchannel.m, 268 , 2016-10-27
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\main.m, 4026 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\._main.m, 268 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\config.m, 3634 , 2018-05-23
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\._config.m, 212 , 2018-05-23
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\README.txt, 1279 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\._README.txt, 268 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\._MonteCarloSimulations, 212 , 2018-05-23
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes, 0 , 2018-05-23
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\Lambda.m, 433 , 2016-09-27
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes, 0 , 2018-05-23
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._Lambda.m, 212 , 2016-09-27
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\RateULs.m, 5187 , 2016-11-29
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._RateULs.m, 212 , 2016-11-29
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\Lambdadash.m, 425 , 2016-09-27
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._Lambdadash.m, 212 , 2016-09-27
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\kappa.m, 312 , 2016-09-27
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._kappa.m, 212 , 2016-09-27
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\RateDLs.m, 5144 , 2016-11-29
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._RateDLs.m, 212 , 2016-11-29
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\ULSINR.m, 9104 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._ULSINR.m, 212 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\RateDL.m, 2306 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._RateDL.m, 212 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\subplus.m, 46 , 2016-09-27
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._subplus.m, 212 , 2016-09-27
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\RateDLb.m, 2795 , 2016-11-29
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._RateDLb.m, 212 , 2016-11-29
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\Lul_access.m, 3197 , 2016-12-25
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._Lul_access.m, 263 , 2016-12-25
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\Assocprob.m, 496 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._Assocprob.m, 212 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\RateULb.m, 2842 , 2016-11-29
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._RateULb.m, 212 , 2016-11-29
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\Ldl_backhaul.m, 2470 , 2016-12-25
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._Ldl_backhaul.m, 263 , 2016-12-25
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\Fad_typical.m, 1259 , 2016-11-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._Fad_typical.m, 212 , 2016-11-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\RateDLm.m, 4437 , 2016-11-29
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._RateDLm.m, 212 , 2016-11-29
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\RateUL.m, 2331 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._RateUL.m, 212 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\Lul_backhaul.m, 2061 , 2016-12-25
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._Lul_backhaul.m, 263 , 2016-12-25
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\ffunc.m, 485 , 2016-09-27
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._ffunc.m, 212 , 2016-09-27
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\config.m, 3636 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._config.m, 212 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\RateULm.m, 4465 , 2016-11-29
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._RateULm.m, 212 , 2016-11-29
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\README.txt, 1715 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._README.txt, 212 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\F.m, 430 , 2016-09-27
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._F.m, 212 , 2016-09-27
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\Ldl_access.m, 3446 , 2016-12-25
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._Ldl_access.m, 263 , 2016-12-25
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\DLSINR.m, 9004 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._DLSINR.m, 212 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\VaryDLfrac_backhaulsplit.m, 1139 , 2016-11-23
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._VaryDLfrac_backhaulsplit.m, 212 , 2016-11-23
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\Upsilon.m, 604 , 2016-09-27
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._Upsilon.m, 212 , 2016-09-27
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\._AnalysisCodes, 212 , 2018-05-23
__MACOSX\._Codes_MandarKulkarni_DynamicTDDSelfbackhaul, 212 , 2018-05-23

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • PCA
    说明:  基于主成分分析(PCA)的人脸识别系统。(Based on principal component analysis (PCA) of face recognition systems.)
    2010-03-27 22:13:10下载
    积分:1
  • lizi1
    说明:  采用白噪声作为输入信号,用递推最小二乘法来进行系统辨识(Using white noise as input signal, using recursive least squares method for system identification)
    2010-04-27 19:05:56下载
    积分:1
  • batchML2
    递推最小二乘法 系统辨识 参数辨识 matlab仿真(Recursive least squares method)
    2011-06-16 21:28:32下载
    积分:1
  • Case-Highlights-MATLAB-program
    MATLAB案例程序集锦,有助于新手入门学习,起辅助作用(Case Highlights MATLAB programto help beginners learn, play a supporting role)
    2014-10-12 19:43:48下载
    积分:1
  • Gauss-Seidel-Method
    此文档是基于matlab的Gauss-Seidel Method的实验报告,没有matlab代码,可供大家参考。(This document is based on the Gauss-Seidel Method matlab experimental report, no matlab code, for your reference.)
    2011-05-29 12:04:49下载
    积分:1
  • myPFC
    This is my model on power factor corrector (PFC)
    2011-12-27 04:57:42下载
    积分:1
  • adboost-demo
    adboost算法的一个例子。在Kearns和Valiant在1989年大作中指出了这种算法的可行性。而后,Freund在 1990年以及他和Schapire在 1994-1996年提出了boosting整个算法思路,似乎这种算法走到 了实际应用的开端。然而直到AdaBoost被viola在其人脸识别系统中运用(2001Viola和 Jones),这种方法才彻底开始暴火.(An example adboost algorithm. Kearns and Valiant pointed at the feasibility of this method in 1989 masterpiece. Then, Freund and Schapire he made in 1990 and in 1994-1996 the idea of ​ ​ boosting the entire algorithm, this algorithm seems to come to the beginning of the practical application. However, until the use of AdaBoost is viola (2001Viola and Jones) in its face recognition systems, this approach was completely start a fire storm.)
    2013-12-28 22:44:27下载
    积分:1
  • psk_cyclo_corr
    psk 的编码调试,系统性能测试,利用MATLAB编程实现,仅供参考 (psk code debugging, system performance testing, the use of MATLAB programming, for reference only)
    2007-09-26 10:48:21下载
    积分:1
  • matlab_40_example
    《matlab40个经典案例》书本PDF扫描版和源程序。福利继续上。欢迎指教(" Matlab40 a classic case of" book PDF scan version and source code. Benefits continue on. Welcome advice)
    2014-01-04 11:55:27下载
    积分:1
  • polarcode_SCLscheme
    这个压缩包里面是极化码的SCL方案的仿真 可以设置不同的码长和信噪比 并且可以选择高斯信道和擦除信道这两种信道(This program simulate the performance of SC-list scheme of polar code. You can choose different SNR and code length.You also can choose two type of channels.)
    2021-04-26 09:38:45下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载