登录
首页 » matlab » Codes_MandarKulkarni_DynamicTDDSelfbackhaul

Codes_MandarKulkarni_DynamicTDDSelfbackhaul

于 2019-03-22 发布
0 156
下载积分: 1 下载次数: 56

代码说明:

说明:  5G network with NOMA performance analysis

文件列表:

Codes_MandarKulkarni_DynamicTDDSelfbackhaul, 0 , 2018-05-23
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\.DS_Store, 6148 , 2016-12-16
__MACOSX, 0 , 2018-05-23
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul, 0 , 2018-05-23
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\._.DS_Store, 212 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations, 0 , 2018-05-23
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\createnetwork.m, 1956 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations, 0 , 2018-05-23
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\._createnetwork.m, 212 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\ScheduleUsers.m, 15778 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\._ScheduleUsers.m, 212 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\AssociateUEandSBS.m, 981 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\._AssociateUEandSBS.m, 268 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\computemetric.m, 9673 , 2016-10-21
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\._computemetric.m, 212 , 2016-10-21
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\computeperformance.m, 2782 , 2018-05-23
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\._computeperformance.m, 212 , 2018-05-23
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\plotAssociations.m, 1036 , 2016-04-11
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\._plotAssociations.m, 176 , 2016-04-11
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\createchannel.m, 3728 , 2016-10-27
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\._createchannel.m, 268 , 2016-10-27
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\main.m, 4026 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\._main.m, 268 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\config.m, 3634 , 2018-05-23
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\._config.m, 212 , 2018-05-23
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\README.txt, 1279 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\MonteCarloSimulations\._README.txt, 268 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\._MonteCarloSimulations, 212 , 2018-05-23
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes, 0 , 2018-05-23
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\Lambda.m, 433 , 2016-09-27
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes, 0 , 2018-05-23
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._Lambda.m, 212 , 2016-09-27
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\RateULs.m, 5187 , 2016-11-29
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._RateULs.m, 212 , 2016-11-29
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\Lambdadash.m, 425 , 2016-09-27
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._Lambdadash.m, 212 , 2016-09-27
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\kappa.m, 312 , 2016-09-27
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._kappa.m, 212 , 2016-09-27
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\RateDLs.m, 5144 , 2016-11-29
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._RateDLs.m, 212 , 2016-11-29
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\ULSINR.m, 9104 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._ULSINR.m, 212 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\RateDL.m, 2306 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._RateDL.m, 212 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\subplus.m, 46 , 2016-09-27
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._subplus.m, 212 , 2016-09-27
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\RateDLb.m, 2795 , 2016-11-29
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._RateDLb.m, 212 , 2016-11-29
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\Lul_access.m, 3197 , 2016-12-25
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._Lul_access.m, 263 , 2016-12-25
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\Assocprob.m, 496 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._Assocprob.m, 212 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\RateULb.m, 2842 , 2016-11-29
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._RateULb.m, 212 , 2016-11-29
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\Ldl_backhaul.m, 2470 , 2016-12-25
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._Ldl_backhaul.m, 263 , 2016-12-25
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\Fad_typical.m, 1259 , 2016-11-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._Fad_typical.m, 212 , 2016-11-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\RateDLm.m, 4437 , 2016-11-29
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._RateDLm.m, 212 , 2016-11-29
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\RateUL.m, 2331 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._RateUL.m, 212 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\Lul_backhaul.m, 2061 , 2016-12-25
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._Lul_backhaul.m, 263 , 2016-12-25
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\ffunc.m, 485 , 2016-09-27
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._ffunc.m, 212 , 2016-09-27
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\config.m, 3636 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._config.m, 212 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\RateULm.m, 4465 , 2016-11-29
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._RateULm.m, 212 , 2016-11-29
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\README.txt, 1715 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._README.txt, 212 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\F.m, 430 , 2016-09-27
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._F.m, 212 , 2016-09-27
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\Ldl_access.m, 3446 , 2016-12-25
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._Ldl_access.m, 263 , 2016-12-25
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\DLSINR.m, 9004 , 2016-12-16
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._DLSINR.m, 212 , 2016-12-16
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\VaryDLfrac_backhaulsplit.m, 1139 , 2016-11-23
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._VaryDLfrac_backhaulsplit.m, 212 , 2016-11-23
Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\Upsilon.m, 604 , 2016-09-27
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\AnalysisCodes\._Upsilon.m, 212 , 2016-09-27
__MACOSX\Codes_MandarKulkarni_DynamicTDDSelfbackhaul\._AnalysisCodes, 212 , 2018-05-23
__MACOSX\._Codes_MandarKulkarni_DynamicTDDSelfbackhaul, 212 , 2018-05-23

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • decoder
    decode the DTMF signals
    2009-06-07 09:22:32下载
    积分:1
  • MATLAB
    科学计算与MATLAB语言科学计算与MATLAB语言(Scientific Computing with MATLAB and the MATLAB language of scientific computing language)
    2011-05-04 10:35:38下载
    积分:1
  • The eigenvector of the eigenvalue
    求解一个矩阵的最大特征根及最大特征根对应的特征向量,并对其归一化,求出权向量。主要用来解决数学建模层次分析法中需求解的各指标权重值。以及附带了几个动态图形的制作编程(The eigenvector of the largest eigenvalue and the largest eigenvalue of a matrix is solved and normalized, and the weight vector is obtained. It is mainly used to solve the weight of each index in demand analysis of mathematical modeling.And programming with several dynamic graphics)
    2018-04-30 13:40:54下载
    积分:1
  • SCEGET
    shuffled complex evolution method (function)
    2013-12-13 03:54:02下载
    积分:1
  • A1Jedi.java
    This program counts the occurrence of specified patterns in the input strands and produces a report for each pattern. The first input to this program will be an integer indicating how many patterns will be provided (call this N). The next N words to this program will be patterns of nucleobases to search for. Following the patterns will be a sequence of strands terminated by the word "end" as before.
    2014-01-25 12:44:00下载
    积分:1
  • noise_corr
    matlab实现相关器,用相关原理检测噪声中的微弱信号(matlab implementation correlator with the relevant principles of weak signal detection in noise)
    2013-10-13 16:23:51下载
    积分:1
  • algorithm
    计算多速滤波器以及其优化算法和加快速率的提高(this program can help you improve the filter )
    2012-09-19 10:11:46下载
    积分:1
  • An-efficient-routing
    有关车辆网的连接性的文档,其中包括车辆网的MATLAB仿真模型及结果(An efficient routing protocol for connecting vehicular networks)
    2015-04-09 16:12:54下载
    积分:1
  • liblinear-1.92
    应用比较好的liblinear软件程序包(Application the better liblinear software package)
    2012-12-18 20:33:30下载
    积分:1
  • Astar_1
    说明:  一种简单的A*寻路算法,可在命令行按要求输入相应起点和终点的坐标。适合于初学者(A simple A* algorithm for path planning, which can input the coordinates of the starting point and end point on the command line as required. It is suitable for beginners.)
    2019-04-19 15:01:36下载
    积分:1
  • 696516资源总数
  • 106446会员总数
  • 9今日下载