登录
首页 » matlab » 聚类指标小结

聚类指标小结

于 2020-06-19 发布
0 303
下载积分: 1 下载次数: 9

代码说明:

说明:  聚类评价指标的各种说明,非常详细,请仔细阅读。(Cluster evaluation indicators of various descriptions, very detailed.)

文件列表:

聚类指标小结\EvaluationCalculate\references.txt, 497 , 2016-11-11
聚类指标小结\EvaluationCalculate\self_Evaluation.m, 2981 , 2016-11-11
聚类指标小结\EvaluationCalculate\test_Evaluation.m, 294 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering.htm, 32222 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\contents.png, 278 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\footnote.png, 190 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1191.png, 230 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1393.png, 9255 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1394.png, 1402 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1395.png, 674 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1396.png, 264 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1397.png, 250 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1398.png, 1446 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1399.png, 205 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1400.png, 446 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1401.png, 1642 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1402.png, 1479 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1403.png, 406 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1404.png, 381 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1405.png, 508 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1406.png, 410 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1407.png, 937 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1408.png, 852 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1409.png, 451 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1410.png, 362 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1411.png, 349 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1412.png, 750 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1413.png, 411 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1414.png, 389 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1415.png, 543 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1416.png, 926 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1417.png, 347 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1418.png, 1536 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1419.png, 154 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1420.png, 1729 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1421.png, 556 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1422.png, 284 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1423.png, 266 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1424.png, 379 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1425.png, 407 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1426.png, 392 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1427.png, 399 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1428.png, 248 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1429.png, 1123 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1430.png, 1694 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1431.png, 554 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1432.png, 656 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1433.png, 460 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1434.png, 498 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1435.png, 216 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img313.png, 128 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img317.png, 251 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img354.png, 216 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img521.png, 302 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img527.png, 330 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img529.png, 329 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img62.png, 258 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img855.png, 578 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\index.png, 246 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\irbook.htm, 315 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\next.png, 245 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\prev.png, 279 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\up.png, 211 , 2016-11-11
聚类指标小结\[2] 聚类评价指标 Rand Index,RI,Recall,Precision,F1 - lixuemei504的专栏 - 博客频道 - CSDN.NET.htm, 42996 , 2016-11-11
聚类指标小结\[3] 聚类的一些评价手段 - luoleicn的专栏 - 博客频道 - CSDN.NET.htm, 46837 , 2016-11-11
聚类指标小结\[4] 聚类结果的评估指标及其JAVA实现 - 一个人漫步走 - 博客频道 - CSDN.NET.htm, 64456 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客.htm, 200939 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\0.gif, 693 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\0.jpg, 22385 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\005uWm1Tjw8f25vhkymvnj313k13kq6q.jpg, 1441 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\0_002.jpg, 13359 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\1.jpg, 2656 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\100.jpg, 3513 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\100_002.jpg, 5543 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\11.swf, 2465 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\117X12px.gif, 1160 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\145686.jpg, 4870 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\1_002.jpg, 1475 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\20130808110619562.jpg, 3253 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\20130808110942546.jpg, 3412 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\20131207154559265.jpg, 2828 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\276304.jpg, 2283 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\276624.jpg, 1634 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\3ffda9c9gw1etm69r812dj205k05kdg5.jpg, 1839 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\50.jpg, 2158 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\50_002.jpg, 1384 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\50_003.jpg, 1686 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\50_004.jpg, 1930 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\63392b03jw8eqrx5uilwlj20v90v7whp.jpg, 1429 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\a.htm, 108 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\alipay.png, 22874 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\bootstrap.css, 99554 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\bootstrap.js, 27828 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\btn-index.png, 3283 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\core.php, 2640 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\default.css, 2352 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\embed.css, 54355 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\embed.js, 63708 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\h.js, 22225 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\highlight.js, 30174 , 2016-11-11

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 决策树与集成算法
    决策树与集成算法,用来分类已知数据种类,希望对编程有帮助(Decision tree and ensemble algorithm are used to classify known data types.)
    2018-09-09 17:38:01下载
    积分:1
  • WDMAP6
    bp网络实现认知无线电的检测和预测,从而达到了对频谱的分配(Bp network realizes the detection and prediction of cognitive radio, thus achieving the spectrum allocation.)
    2018-09-06 15:06:37下载
    积分:1
  • kasterenDataset
    主要针对行为识别,常用数据处理方法及分类,可视化 包含数据集(Mainly for behavior recognition, commonly used data processing methods and classification, visualization Contain data sets)
    2021-03-30 10:29:10下载
    积分:1
  • KMeans
    说明:  用matlab 实现了kmeans算法还附有评价指标计算(Matlab to achieve kmeans algorithm also attached to the evaluation index calculation)
    2020-06-19 04:40:01下载
    积分:1
  • 贝叶斯网络 R语言实例 牛津大学
    说明:  R语言构建贝叶斯网络,很实用的讲解和案例(Construction of Bayesian network with R language, a very practical explanation and case)
    2020-06-19 18:26:44下载
    积分:1
  • debbgger
    三次样条插值的C语言算法,但是总是数据溢出()
    2018-05-27 05:33:39下载
    积分:1
  • pu_ju_lei
    说明:  将数据集转换为拉普拉斯矩阵,然后利用基于图论的谱聚类进行聚类。拉普拉斯矩阵采用高斯核函数,全连接方法计算。谱聚类擅长处理高维数据或非凸数据集。(The data set is transformed into Laplacian matrix, and then clustered by spectral clustering based on graph theory. The Laplacian matrix is calculated by using the Gauss kernel function and the full connection method. Spectral clustering is good at dealing with high-dimensional or non-convex data sets.)
    2019-07-01 16:05:39下载
    积分:1
  • 机器学习与R语言(machine_learning)
    机器学习与R语言(machine_learning)源代码下载,内含R语言实现机器学习算法和应用案例(Machine learning and R language (machine_learning) source code download, containing R language to implement machine learning algorithms and application cases)
    2020-09-26 17:17:47下载
    积分:1
  • QB模型 神经网络
    说明:  从数据库获取车辆在一段时间内的所有行驶记录的相关数据,确定所需数据为GPS经纬度坐标和驾驶时长等,QB模型采用MDF的思想,其基本思想为:通过平均直接翻转距离函数定义两条轨迹之间的距离,两条轨迹需要具有相同的经纬度点数,具有相同点数的轨迹最大的优点是对轨迹距离成对计算,且相同轨迹之间具有更高的分辨率,对于轨迹聚类的结果有一定的优化。(Retrieved from the database cars all over a period of time, record the related data, determine the required data for the GPS latitude and longitude coordinates, and the driving time, QB model by adopting the idea of MDF, its basic idea is: flip directly by the average distance function definition of the distance between two trajectories, two tracks will have the same latitude and longitude points, and has the biggest advantages of the same points of trajectory track distance calculation in pairs, and has higher resolution, between the same trajectory for trajectory clustering results have certain optimization.)
    2020-06-23 08:00:01下载
    积分:1
  • k-means-for-iris
    说明:  利用K均值聚类对鸢尾花样本进行聚类的matlab程序,包含源代码、样本数据、聚类结果(The matlab program of clustering iris samples by K-means clustering, including source code, sample data and clustering results)
    2020-10-17 20:27:27下载
    积分:1
  • 696518资源总数
  • 106235会员总数
  • 12今日下载