登录
首页 » matlab » 聚类指标小结

聚类指标小结

于 2020-06-19 发布
0 324
下载积分: 1 下载次数: 9

代码说明:

说明:  聚类评价指标的各种说明,非常详细,请仔细阅读。(Cluster evaluation indicators of various descriptions, very detailed.)

文件列表:

聚类指标小结\EvaluationCalculate\references.txt, 497 , 2016-11-11
聚类指标小结\EvaluationCalculate\self_Evaluation.m, 2981 , 2016-11-11
聚类指标小结\EvaluationCalculate\test_Evaluation.m, 294 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering.htm, 32222 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\contents.png, 278 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\footnote.png, 190 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1191.png, 230 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1393.png, 9255 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1394.png, 1402 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1395.png, 674 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1396.png, 264 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1397.png, 250 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1398.png, 1446 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1399.png, 205 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1400.png, 446 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1401.png, 1642 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1402.png, 1479 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1403.png, 406 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1404.png, 381 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1405.png, 508 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1406.png, 410 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1407.png, 937 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1408.png, 852 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1409.png, 451 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1410.png, 362 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1411.png, 349 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1412.png, 750 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1413.png, 411 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1414.png, 389 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1415.png, 543 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1416.png, 926 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1417.png, 347 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1418.png, 1536 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1419.png, 154 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1420.png, 1729 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1421.png, 556 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1422.png, 284 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1423.png, 266 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1424.png, 379 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1425.png, 407 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1426.png, 392 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1427.png, 399 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1428.png, 248 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1429.png, 1123 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1430.png, 1694 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1431.png, 554 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1432.png, 656 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1433.png, 460 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1434.png, 498 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1435.png, 216 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img313.png, 128 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img317.png, 251 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img354.png, 216 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img521.png, 302 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img527.png, 330 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img529.png, 329 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img62.png, 258 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img855.png, 578 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\index.png, 246 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\irbook.htm, 315 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\next.png, 245 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\prev.png, 279 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\up.png, 211 , 2016-11-11
聚类指标小结\[2] 聚类评价指标 Rand Index,RI,Recall,Precision,F1 - lixuemei504的专栏 - 博客频道 - CSDN.NET.htm, 42996 , 2016-11-11
聚类指标小结\[3] 聚类的一些评价手段 - luoleicn的专栏 - 博客频道 - CSDN.NET.htm, 46837 , 2016-11-11
聚类指标小结\[4] 聚类结果的评估指标及其JAVA实现 - 一个人漫步走 - 博客频道 - CSDN.NET.htm, 64456 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客.htm, 200939 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\0.gif, 693 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\0.jpg, 22385 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\005uWm1Tjw8f25vhkymvnj313k13kq6q.jpg, 1441 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\0_002.jpg, 13359 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\1.jpg, 2656 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\100.jpg, 3513 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\100_002.jpg, 5543 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\11.swf, 2465 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\117X12px.gif, 1160 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\145686.jpg, 4870 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\1_002.jpg, 1475 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\20130808110619562.jpg, 3253 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\20130808110942546.jpg, 3412 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\20131207154559265.jpg, 2828 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\276304.jpg, 2283 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\276624.jpg, 1634 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\3ffda9c9gw1etm69r812dj205k05kdg5.jpg, 1839 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\50.jpg, 2158 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\50_002.jpg, 1384 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\50_003.jpg, 1686 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\50_004.jpg, 1930 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\63392b03jw8eqrx5uilwlj20v90v7whp.jpg, 1429 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\a.htm, 108 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\alipay.png, 22874 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\bootstrap.css, 99554 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\bootstrap.js, 27828 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\btn-index.png, 3283 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\core.php, 2640 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\default.css, 2352 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\embed.css, 54355 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\embed.js, 63708 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\h.js, 22225 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\highlight.js, 30174 , 2016-11-11

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • GibbsLDA
    用Gibb Sampling 的方法对LDA的参数进行推断(LDA model with Gibbs Sampling for inference)
    2019-01-24 09:28:57下载
    积分:1
  • pu_ju_lei
    说明:  将数据集转换为拉普拉斯矩阵,然后利用基于图论的谱聚类进行聚类。拉普拉斯矩阵采用高斯核函数,全连接方法计算。谱聚类擅长处理高维数据或非凸数据集。(The data set is transformed into Laplacian matrix, and then clustered by spectral clustering based on graph theory. The Laplacian matrix is calculated by using the Gauss kernel function and the full connection method. Spectral clustering is good at dealing with high-dimensional or non-convex data sets.)
    2019-07-01 16:05:39下载
    积分:1
  • 735677
    cfd经典PISO算法的FORTRAN程序()
    2018-05-25 09:08:49下载
    积分:1
  • 40289243
    这是C语言中的难点的一些算法,其中包括用C实现的班级成绩管理,用C实现的排序算法等()
    2018-01-08 21:27:54下载
    积分:1
  • 高效用项集算法--HUIMINER算法
    数据挖掘算法,高效用项集挖掘算法,加权频繁项集挖掘,HUIMINER算法,源码中有详细注释
    2023-02-10 05:45:03下载
    积分:1
  • boxcox
    说明:  boxcox函数的python实现,引用该函数可将偏态分布调整为正态分布(Python implementation of box Cox function)
    2020-06-17 09:40:01下载
    积分:1
  • iqitiallybwindowbserial
    可以用黄金分割和斐波那契算法实现优化,只要改变相应的参数就可以用了(You can use the golden section and the Fibonacci algorithm to optimize, just change the corresponding parameters.)
    2018-09-11 21:57:11下载
    积分:1
  • propospuionsview
    算法分析中的贪心算法的实现,并有完整的测试数据()
    2018-05-28 16:41:27下载
    积分:1
  • guanlianguize
    r语言中关联规则代码实现 运用arulesViz包和arules包中的apriori函数(Code Implementation of Association Rule)
    2019-01-24 15:39:51下载
    积分:1
  • arima
    时间序列法,通过过去数据来建立相应模型来预测未来数据(Time series, using past data to establish corresponding models to predict future data)
    2018-03-08 22:01:43下载
    积分:1
  • 696516资源总数
  • 106442会员总数
  • 11今日下载