登录
首页 » Others » ltlk4

ltlk4

于 2018-02-07 发布 文件大小:305KB
0 265
下载积分: 1 下载次数: 1

代码说明:

  FIR Filter Design This chapter treats the design of linear-pha()

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • BIC确定GMM聚类簇
    说明:  通过贝叶斯信息准则确定高斯混合聚类方法的聚类簇数(Determining the Cluster Number of GMM Clusters by BIC)
    2021-03-26 19:19:13下载
    积分:1
  • Archive
    PCA 数据降维 PTYTHON 数据分析/挖掘(PCA dimensionality reduction data mining/analysis)
    2020-06-21 15:40:02下载
    积分:1
  • 聚类指标小结
    聚类评价指标的各种说明,非常详细,请仔细阅读。(Cluster evaluation indicators of various descriptions, very detailed.)
    2020-06-19 05:20:01下载
    积分:1
  • 关于大的相关论文
    关于大数据的论文,对稀疏表示分类有很大的帮助,希望对初学者哟帮助
    2022-02-06 00:21:30下载
    积分:1
  • 最近邻分类代码
    在linux 下C语言实现最近邻聚类算法,工程已经使用(near K neighbor cluster)
    2017-12-21 16:45:51下载
    积分:1
  • 用python 做的网络爬虫
    说明:  用python 做的网络数据爬虫,爬取淘宝数据,并分析。(Use Python to do the network data crawler, crawl the Taobao data, and analyze.)
    2020-02-25 18:34:31下载
    积分:1
  • knn.py
    kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 kNN方法在类别决策时,只与极少量的相邻样本有关。由于kNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,kNN方法较其他方法更为适合。(Basic source application)
    2018-10-30 16:50:13下载
    积分:1
  • iqitiallybwindowbserial
    可以用黄金分割和斐波那契算法实现优化,只要改变相应的参数就可以用了(You can use the golden section and the Fibonacci algorithm to optimize, just change the corresponding parameters.)
    2018-09-11 21:57:11下载
    积分:1
  • FNN与PCA和KPCA结合
    一种特征提取方法:结合主元分析(PCA)和核主元分析(KPCA)的前馈神经网络(FNN)(A feature extraction method: the feedforward neural network (FNN) combined with principal component analysis (PCA) and kernel principal component analysis (KPCA))
    2020-09-18 10:27:53下载
    积分:1
  • kasterenDataset
    主要针对行为识别,常用数据处理方法及分类,可视化 包含数据集(Mainly for behavior recognition, commonly used data processing methods and classification, visualization Contain data sets)
    2021-03-30 10:29:10下载
    积分:1
  • 696518资源总数
  • 106182会员总数
  • 24今日下载