登录
首页 » matlab » 马尔科夫随机场算法matlab实现图像分辨率增强

马尔科夫随机场算法matlab实现图像分辨率增强

于 2020-03-19 发布
0 227
下载积分: 1 下载次数: 2

代码说明:

说明:  马尔科夫随机场算法matlab实现图像分辨率增强(Markov enhanced the image resolution)

文件列表:

maerkefu\maerkf.m, 2529 , 2018-07-11
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\.gitattributes, 483 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\.gitignore, 2643 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\Gaussian noise Removal\blur_image.m, 156 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\Gaussian noise Removal\main_restore.m, 155 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\Gaussian noise Removal\original.jpg, 63195 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\Gaussian noise Removal\restore_image.m, 2094 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\Gaussian noise Removal\Untitled2.m, 169 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\covmatrix.m, 168 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\EnergyOfFeatureField.m, 478 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\EnergyOfLabelField.m, 396 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\foot_ulcer_0028.jpg, 20189 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\GMM_parameter.m, 250 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\ICM.m, 766 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\imstack2vectors.m, 907 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\leg_ulcers_0017.jpg, 25814 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\leg_ulcers_0097.jpg, 26267 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\leg_ulcer_case_2_7.jpg, 32610 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\Main_seg.m, 678 , 2018-07-17
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\NeiX.m, 709 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\Readme.txt, 647 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\wound.m, 949 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\00615858.pdf, 466520 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\00650883.pdf, 214169 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\00698638.pdf, 108370 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\00769356.pdf, 164846 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\04767596.pdf, 9423103 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\0903.3114.pdf, 356544 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\33.pdf, 297026 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\Besag86.pdf, 6741486 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\FigueiredoCVPR.pdf, 1445440 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\good 1-s2.0-0167865594900280-main.pdf, 514674 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\MRF.pdf, 2492641 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\mrfbook.pdf, 7330392 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\NOISE ijjvol2no3p3.pdf, 330803 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\pattrec99.pdf, 946743 , 2014-10-14
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Readme.txt, 647 , 2014-10-14
maerkefu\__MACOSX\._Wound_Image_Segmentation_by_Markov_Random_Field-master, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\._.gitattributes, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\._.gitignore, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\._Code, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\._Read Paper, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\._Readme.txt, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\._Gaussian noise Removal, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\._MRF_Edge, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\._Readme.txt, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\._wound.m, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\Gaussian noise Removal\._blur_image.m, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\Gaussian noise Removal\._main_restore.m, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\Gaussian noise Removal\._original.jpg, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\Gaussian noise Removal\._restore_image.m, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\Gaussian noise Removal\._Untitled2.m, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\._covmatrix.m, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\._EnergyOfFeatureField.m, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\._EnergyOfLabelField.m, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\._foot_ulcer_0028.jpg, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\._GMM_parameter.m, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\._ICM.m, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\._imstack2vectors.m, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\._leg_ulcers_0017.jpg, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\._leg_ulcers_0097.jpg, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\._leg_ulcer_case_2_7.jpg, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\._Main_seg.asv, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\._Main_seg.m, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge\._NeiX.m, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\._00615858.pdf, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\._00650883.pdf, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\._00698638.pdf, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\._00769356.pdf, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\._04767596.pdf, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\._0903.3114.pdf, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\._33.pdf, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\._Besag86.pdf, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\._FigueiredoCVPR.pdf, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\._good 1-s2.0-0167865594900280-main.pdf, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\._MRF.pdf, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\._mrfbook.pdf, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\._NOISE ijjvol2no3p3.pdf, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper\._pattrec99.pdf, 212 , 2014-10-14
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\Gaussian noise Removal, 0 , 2018-08-18
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge, 0 , 2018-08-18
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\Gaussian noise Removal, 0 , 2018-08-18
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code\MRF_Edge, 0 , 2018-08-18
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code, 0 , 2018-08-18
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper, 0 , 2018-08-18
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Code, 0 , 2018-08-18
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master\Read Paper, 0 , 2018-08-18
maerkefu\__MACOSX\Wound_Image_Segmentation_by_Markov_Random_Field-master, 0 , 2018-08-18
maerkefu\Wound_Image_Segmentation_by_Markov_Random_Field-master, 0 , 2018-08-18
maerkefu\__MACOSX, 0 , 2018-08-18
maerkefu, 0 , 2018-08-18

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Images-add-mania
    用DHNN (离散Hopfield网络)存储6幅图像作为联想记忆信息,然后对图像进行加噪处理,用所设计的DHNN进行图像复原,给出结果。(Storing DHNN (discrete Hopfield network) six images as associative memory information, and then add noise to the image processing, image restoration designed with DHNN, shows the results.)
    2020-10-03 11:47:40下载
    积分:1
  • Block-matching(Matlab)
    用块匹配法求超分辨率复原中的运动矩阵!提出了一种快速,半像素的三步法!(Block-matching method using super-resolution recovery of movement in the matrix! Presents a fast, three-step half-pixel!)
    2009-06-14 22:18:20下载
    积分:1
  • Multi-lbp
    多尺度LBP,代码根据论文“Learning Multi-scale Block Local Binary Patterns for Face Recognition”编写的(this code is obtained from the paper named "Learning Multi-scale Block Local Binary Patterns for Face Recognition")
    2013-05-07 09:49:22下载
    积分:1
  • bmpfile_read
    bmp文件的读取,2,8,16,24bit自适配(bmp file read,2、8、16、24bit adjust)
    2012-11-21 23:23:14下载
    积分:1
  • 多源的融合NMF
    基于非负矩阵分解理论,实现多源的图像融合(Based on non-negative matrix decomposition theory, to achieve image fusion of multi-source)
    2015-05-20 13:19:35下载
    积分:1
  • cheliangjiance
    这是我的课程设计作业,作用是测试车流量,对车辆进行定位分割,已验证成功内附测试视频(This is my course design work, the role is to test the traffic flow, the vehicle positioning and segmentation, has been successfully included in the test video)
    2017-05-05 20:45:25下载
    积分:1
  • 10.1.1.47.5215
    小波包分解的原始文献,研究小波包分解必读!(Lectures on wavelet packet algorithms)
    2017-01-23 10:11:36下载
    积分:1
  • imnoise2
    使用规定分布生成空间随机噪声,可以选择噪声类型和参数。(Using the prescribed distribution to generate spatial random noise, we can choose noise types and parameters.)
    2018-04-16 10:13:34下载
    积分:1
  • MSST_Y
    说明:  该算法的功能是实现时频分析中多种分析方法后续处理中的图像压缩功能,进一步提高图像的时频分辨率(The function of the algorithm is to realize the image compression function in the subsequent processing of various analysis methods in time-frequency analysis, and further improve the time-frequency resolution of the image)
    2019-11-07 11:02:18下载
    积分:1
  • MATLABon-wavepack
    应用MATLAB小波工具箱中的一维小波包分析函数,采用默认阈值、调节后的阈值两种方法对含噪声的信号进行处理,并以一可见吸收光谱降噪为例,说明该方法在信号降噪中有效可行. (Application of MATLAB wavelet toolbox one dimensional wavelet packet analysis function, using the default threshold value, the adjusted threshold value of two kinds of methods including noise signal processing, and with a visible absorption spectrum noise reduction as an example to show the method is effective in signal noise reduction is feasible. )
    2021-01-13 15:48:49下载
    积分:1
  • 696516资源总数
  • 106457会员总数
  • 15今日下载