登录
首页 » matlab » PG_BOW_DEMO-master

PG_BOW_DEMO-master

于 2020-05-05 发布
0 212
下载积分: 1 下载次数: 2

代码说明:

说明:  利用BOW结合空间金字塔模型,使用支持向量机进行图像分类(Image classification using bow)

文件列表:

PG_BOW_DEMO-master, 0 , 2016-06-19
PG_BOW_DEMO-master\.gitignore, 12 , 2016-06-19
PG_BOW_DEMO-master\BOW, 0 , 2016-06-19
PG_BOW_DEMO-master\BOW\CalculateDictionary.m, 3709 , 2016-06-19
PG_BOW_DEMO-master\BOW\CompilePyramid.m, 3260 , 2016-06-19
PG_BOW_DEMO-master\BOW\EuclideanDistance.m, 1303 , 2016-06-19
PG_BOW_DEMO-master\BOW\GenerateSiftDescriptors.m, 2654 , 2016-06-19
PG_BOW_DEMO-master\BOW\MakeDataDirectory.m, 569 , 2016-06-19
PG_BOW_DEMO-master\BOW\do_assignment.m, 2384 , 2016-06-19
PG_BOW_DEMO-master\BOW\do_classification_inter_svm.m, 1882 , 2016-06-19
PG_BOW_DEMO-master\BOW\do_classification_rbf_svm.m, 1416 , 2016-06-19
PG_BOW_DEMO-master\BOW\do_normalize.m, 875 , 2016-06-19
PG_BOW_DEMO-master\BOW\do_p_classification_inter_svm.m, 2307 , 2016-06-19
PG_BOW_DEMO-master\BOW\do_p_classification_rbf_svm.m, 1385 , 2016-06-19
PG_BOW_DEMO-master\BOW\draw_cm.m, 654 , 2016-06-19
PG_BOW_DEMO-master\BOW\find_grid.m, 436 , 2016-06-19
PG_BOW_DEMO-master\BOW\find_sift_grid.m, 4155 , 2016-06-19
PG_BOW_DEMO-master\BOW\hist_isect.m, 729 , 2016-06-19
PG_BOW_DEMO-master\BOW\hist_isect_c.c, 3119 , 2016-06-19
PG_BOW_DEMO-master\BOW\load_image.m, 146 , 2016-06-19
PG_BOW_DEMO-master\BOW\make_dir.m, 213 , 2016-06-19
PG_BOW_DEMO-master\BOW\normalize_sift.m, 632 , 2016-06-19
PG_BOW_DEMO-master\BOW\num2string.m, 309 , 2016-06-19
PG_BOW_DEMO-master\BOW\read_image_db.m, 253 , 2016-06-19
PG_BOW_DEMO-master\BOW\rotateXLabels.m, 13971 , 2016-06-19
PG_BOW_DEMO-master\BOW\show_results_script.m, 551 , 2016-06-19
PG_BOW_DEMO-master\BOW\sumnormalize.m, 231 , 2016-06-19
PG_BOW_DEMO-master\LBP, 0 , 2016-06-19
PG_BOW_DEMO-master\LBP\getmapping.m, 2662 , 2016-06-19
PG_BOW_DEMO-master\LBP\lbp.m, 5835 , 2016-06-19
PG_BOW_DEMO-master\ReadMe.txt, 2168 , 2016-06-19
PG_BOW_DEMO-master\images, 0 , 2016-06-19
PG_BOW_DEMO-master\images\testing, 0 , 2016-06-19
PG_BOW_DEMO-master\images\testing\Phoning, 0 , 2016-06-19
PG_BOW_DEMO-master\images\testing\Phoning\Phoning_0041.jpg, 7711 , 2016-06-19
PG_BOW_DEMO-master\images\testing\Phoning\Phoning_0042.jpg, 5900 , 2016-06-19
PG_BOW_DEMO-master\images\testing\Phoning\Phoning_0043.jpg, 7294 , 2016-06-19
PG_BOW_DEMO-master\images\testing\Phoning\Phoning_0044.jpg, 5867 , 2016-06-19
PG_BOW_DEMO-master\images\testing\Phoning\Phoning_0045.jpg, 8424 , 2016-06-19
PG_BOW_DEMO-master\images\testing\Phoning\Phoning_0046.jpg, 8039 , 2016-06-19
PG_BOW_DEMO-master\images\testing\Phoning\Phoning_0047.jpg, 7224 , 2016-06-19
PG_BOW_DEMO-master\images\testing\Phoning\Phoning_0048.jpg, 5127 , 2016-06-19
PG_BOW_DEMO-master\images\testing\Phoning\Phoning_0049.jpg, 7508 , 2016-06-19
PG_BOW_DEMO-master\images\testing\Phoning\Phoning_0050.jpg, 8208 , 2016-06-19
PG_BOW_DEMO-master\images\testing\Phoning\Phoning_0051.jpg, 5768 , 2016-06-19
PG_BOW_DEMO-master\images\testing\Phoning\Phoning_0052.jpg, 8054 , 2016-06-19
PG_BOW_DEMO-master\images\testing\Phoning\Phoning_0053.jpg, 4570 , 2016-06-19
PG_BOW_DEMO-master\images\testing\Phoning\Phoning_0054.jpg, 6483 , 2016-06-19
PG_BOW_DEMO-master\images\testing\Phoning\Phoning_0055.jpg, 10949 , 2016-06-19
PG_BOW_DEMO-master\images\testing\Phoning\Phoning_0056.jpg, 6162 , 2016-06-19
PG_BOW_DEMO-master\images\testing\Phoning\Phoning_0057.jpg, 6260 , 2016-06-19
PG_BOW_DEMO-master\images\testing\Phoning\Phoning_0058.jpg, 6075 , 2016-06-19
PG_BOW_DEMO-master\images\testing\Phoning\Phoning_0059.jpg, 6552 , 2016-06-19
PG_BOW_DEMO-master\images\testing\Phoning\Phoning_0060.jpg, 6937 , 2016-06-19
PG_BOW_DEMO-master\images\testing\PlayingGuitar, 0 , 2016-06-19
PG_BOW_DEMO-master\images\testing\PlayingGuitar\PlayingGuitar_0041.jpg, 9435 , 2016-06-19
PG_BOW_DEMO-master\images\testing\PlayingGuitar\PlayingGuitar_0042.jpg, 7187 , 2016-06-19
PG_BOW_DEMO-master\images\testing\PlayingGuitar\PlayingGuitar_0043.jpg, 8207 , 2016-06-19
PG_BOW_DEMO-master\images\testing\PlayingGuitar\PlayingGuitar_0044.jpg, 8089 , 2016-06-19
PG_BOW_DEMO-master\images\testing\PlayingGuitar\PlayingGuitar_0045.jpg, 8057 , 2016-06-19
PG_BOW_DEMO-master\images\testing\PlayingGuitar\PlayingGuitar_0046.jpg, 6645 , 2016-06-19
PG_BOW_DEMO-master\images\testing\PlayingGuitar\PlayingGuitar_0047.jpg, 7999 , 2016-06-19
PG_BOW_DEMO-master\images\testing\PlayingGuitar\PlayingGuitar_0048.jpg, 6086 , 2016-06-19
PG_BOW_DEMO-master\images\testing\PlayingGuitar\PlayingGuitar_0049.jpg, 8494 , 2016-06-19
PG_BOW_DEMO-master\images\testing\PlayingGuitar\PlayingGuitar_0050.jpg, 8091 , 2016-06-19
PG_BOW_DEMO-master\images\testing\PlayingGuitar\PlayingGuitar_0051.jpg, 6623 , 2016-06-19
PG_BOW_DEMO-master\images\testing\PlayingGuitar\PlayingGuitar_0052.jpg, 8579 , 2016-06-19
PG_BOW_DEMO-master\images\testing\PlayingGuitar\PlayingGuitar_0053.jpg, 6667 , 2016-06-19
PG_BOW_DEMO-master\images\testing\PlayingGuitar\PlayingGuitar_0054.jpg, 8841 , 2016-06-19
PG_BOW_DEMO-master\images\testing\PlayingGuitar\PlayingGuitar_0055.jpg, 6044 , 2016-06-19
PG_BOW_DEMO-master\images\testing\PlayingGuitar\PlayingGuitar_0056.jpg, 9012 , 2016-06-19
PG_BOW_DEMO-master\images\testing\PlayingGuitar\PlayingGuitar_0057.jpg, 6193 , 2016-06-19
PG_BOW_DEMO-master\images\testing\PlayingGuitar\PlayingGuitar_0058.jpg, 7634 , 2016-06-19
PG_BOW_DEMO-master\images\testing\PlayingGuitar\PlayingGuitar_0059.jpg, 7334 , 2016-06-19
PG_BOW_DEMO-master\images\testing\PlayingGuitar\PlayingGuitar_0060.jpg, 6169 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingBike, 0 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingBike\RidingBike_0041.jpg, 11497 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingBike\RidingBike_0042.jpg, 9138 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingBike\RidingBike_0043.jpg, 12120 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingBike\RidingBike_0044.jpg, 14275 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingBike\RidingBike_0045.jpg, 10144 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingBike\RidingBike_0046.jpg, 7738 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingBike\RidingBike_0047.jpg, 12070 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingBike\RidingBike_0048.jpg, 10762 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingBike\RidingBike_0049.jpg, 9391 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingBike\RidingBike_0050.jpg, 10658 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingBike\RidingBike_0051.jpg, 9922 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingBike\RidingBike_0052.jpg, 8439 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingBike\RidingBike_0053.jpg, 18064 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingBike\RidingBike_0054.jpg, 8102 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingBike\RidingBike_0055.jpg, 12955 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingBike\RidingBike_0056.jpg, 10017 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingBike\RidingBike_0057.jpg, 11733 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingBike\RidingBike_0058.jpg, 8225 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingBike\RidingBike_0059.jpg, 11828 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingBike\RidingBike_0060.jpg, 10048 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingHorse, 0 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingHorse\RidingHorse_0041.jpg, 10412 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingHorse\RidingHorse_0042.jpg, 9355 , 2016-06-19
PG_BOW_DEMO-master\images\testing\RidingHorse\RidingHorse_0043.jpg, 10007 , 2016-06-19

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • GMM
    本代码建立高斯混合模型(高斯多模型)(GMM),将其用于计算机视觉领域的视频目标检测/视频监控/运动检测/运动目标检测/视频目标跟踪等相关应用中。(This code sets up Gaussian mixture model(Gaussion Mixture Model, GMM) with image sequences for the research and application field of computer vision, using GMM for visual object detection(video object detection), visual surveillance, motion detection, motion tracking, visual object tracking, video object tracking, etc.)
    2011-01-14 10:21:54下载
    积分:1
  • pcnnfilter
    PCNN实现降噪的不错 PCNN是很好的自动分割工具 PCNN是很好的自动分割工具(PCNN是很好的自动分割工具,)
    2009-06-20 15:47:19下载
    积分:1
  • MNF
    说明:  最小噪声分离变换(Minimum Noise Fraction Rotation,MNF Rotation)工具用于判定图像数据内在的维数(即波段数),分离数据中的噪声,减少随后处理中的计算需求量(Minimum Noise Fraction Rotation (MNF Rotation) tool is used to determine the intrinsic dimension (i.e. band number) of image data, separate the noise in data, and reduce the computational requirements in subsequent processing.)
    2020-06-26 15:40:02下载
    积分:1
  • Wave-equation-forward-modeling
    1、参数初始化; 2、形成边界削波数据; 3、波场初始化; 4、Zmax层波场延拓到深度Zmax-1; 5、Zi+1层波场延拓到深度Zi; 6、重复5,从Iz Nz-1开始,直到Iz 1,得测线上的频率—空间域波场; 7、频率-空间域波场对频率做反傅里叶变换,得时间-空间波场; (1, parameter initialization 2, the formation of boundary clipping data 3, wave field initialization 4, Zmax layer wave field extended to the depth of Zmax-1 5, Zi+1 layer wave field extended to the depth of Zi 6, repeat 5, starting Iz Nz-1 until Iz 1, the frequency of the test line- spatial domain wave field 7, frequency space domain wave field to frequency inverse Fourier transform, time- space field )
    2021-03-07 16:59:29下载
    积分:1
  • sift
    SIFT 算法的实质上是提取局部特征的算法, 该算法在尺度空间寻找极值点, 然后根据极值点来获得尺度、旋转不变量和位置等特征。(In essence, the SIFT algorithm is an algorithm to extract local features. The algorithm finds the extreme points in the scale space and then obtains the characteristics of scale, rotation invariant and position according to the extreme point.)
    2018-05-10 08:13:41下载
    积分:1
  • matlab
    对图像进行灰度处理,乘除处理法处理,加法处理,减法处理(Gray scale, multiplication and division of image)
    2020-10-11 09:57:33下载
    积分:1
  • SiftGPU-V370
    说明:  使用gpu、cpu并行进行sift算子计算匹配,能够在原来的基础上加速处理,但对显卡要求较高,具体环境配置使用方法可以参照mannual(SiftGPU is an implementation of SIFT [1] for GPU. SiftGPU processes pixels parallely to build Gaussian pyramids and detect DoG Keypoints. Based on GPU list generation[3], SiftGPU then uses a GPU/CPU mixed method to efficiently build compact keypoint lists. Finally keypoints are processed parallely to get their orientations and descriptors. SiftGPU is inspired by Andrea Vedaldi s sift++[2] and Sudipta N Sinha et al s GPU-SIFT[4] . Many parameters of sift++ ( for example, number of octaves, number of DOG levels, edge threshold, etc) are also available in SiftGPU. The shader programs are dynamically generated according to the parameters that user specified. SiftGPU also includes a GPU exhaustive/guided sift matcher SiftMatchGPU. It basically multiplies the descriptor matrix on GPU and find closest feature matches on GPU. Both GLSL and CUDA implementations are provided. )
    2011-02-23 10:20:27下载
    积分:1
  • test
    matlab光学仿真,模拟光线的反射、折射;非常强大的光学仿真软件。(Matlab optical simulation,Simulate the reflection and refraction of light;;very powerful optical simulation software.)
    2020-07-29 14:38:40下载
    积分:1
  • NMF-of-beta-divergence
    这是著名的“Algorithmes de factorisation en matrices non-négatives fondée sur la beta-divergence”这篇文章算法的matlab源代码(This is the famous article " Algorithmes de factorisation en matrices non-ngatives fonde sur la beta-divergence" algorithm matlab source code)
    2013-04-08 15:33:20下载
    积分:1
  • f771982e0947
    sift算法引用于图像处理的一些常用程序(a reference to the image processing algorithms sift some common procedures)
    2020-09-03 13:48:07下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载