登录
首页 » matlab » antenna

antenna

于 2020-05-29 发布
0 263
下载积分: 1 下载次数: 5

代码说明:

说明:  计算阵列天线幅度加权。泰勒和切比雪夫两种计算方法。(Chebyshev amplitude weighting calculation of array antenna)

文件列表:

qiebixuefu.m, 4293 , 2020-03-09
taile.m, 1603 , 2020-03-09

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • idm
    idm code used for multiple access
    2012-06-04 18:39:23下载
    积分:1
  • adaptivethreshoding
    thresholding technique
    2010-11-10 01:34:34下载
    积分:1
  • Algoritmos
    This is a case for recognition of hand gestures using the 7 Hu moments and neural network classifiers
    2009-05-07 23:25:56下载
    积分:1
  • kalman-pinghua
    编写的一个随动系统的kalman的平滑算法;(Prepared by a smoothing algorithm based on kalman)
    2009-11-28 14:23:24下载
    积分:1
  • feixianxingfangchengzujiesuan
    非线性方程组数值计算,MATLAB语言实现。包括多种迭代方法,牛顿法,拟牛顿法,以及相关的改进算法。(Numerical calculation implementation)
    2010-12-06 10:16:08下载
    积分:1
  • height-inverse
    极化干涉SAR高度反演程序,实现了对polarsar软件产生的仿真数据用三阶段算法反演出了高度(Polarimetric SAR interferometry height inversion program the simulation data the polarsar software with a three-stage algorithm show a high degree of anti-)
    2020-12-06 22:29:21下载
    积分:1
  • speech-enhancement
    语音增强算法程序 包含多种单声道降噪算法(Speech enhancement algorithm program includes a variety of single-channel noise reduction algorithm)
    2012-11-06 21:26:32下载
    积分:1
  • matlab-SVM
    本资料包括实验要求文档,报告文档,训练及测试数据,matlab源代码。就给定问题,利用SVM来进行分类。SVM包括hardmargin的线性和非线性内核,softmargin的线性和非线性内核分别来分类以及评估分类准确度(a MATLAB (M-file) program to compute the discriminant functiong for the following SVMs, using the training set provided:A hard-margin SVM with the linear kernel, A hard-margin SVM with a polynomial kernel, A soft-margin SVM with a polynomial kernel as given above)
    2013-05-14 17:56:19下载
    积分:1
  • fastKICA
    说明:  盲源分离FastICA、matalab程序,(FAST KERNEL ICA | |--------------------| Version 1.0- February 2007 Copyright 2007 Stefanie Jegelka, Hao Shen, Arthur Gretton This package contains a Matlab implementation of the Fast Kernel ICA algorithm as described in [1]. Kernel ICA is based on minimizing a kernel measure of statistical independence, namely the Hilbert-Schmidt norm of the covariance operator in feature space (see [3]: this is called HSIC). Given an (n x m) matrix W of n samples from m mixed sources, the goal is to find a demixing matrix X such that the dependence between the estimated unmixed sources X *W is minimal. FastKICA uses an approximate Newton method to perfom this optimization. For more information on the algorithm, read [1], and for more information on HSIC, refer to [3]. The functions chol_gauss and amariD are taken from and based on, respectively, code from Francis Bach (available at http://cmm.ensmp.fr/~bach/kernel-ica/index.htm). The derivative is com)
    2010-04-02 17:49:18下载
    积分:1
  • psobp
    BP neural network trained by PSO algorithm
    2015-01-06 23:31:02下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载