登录
首页 » matlab » fmcw_positioning_radar-master

fmcw_positioning_radar-master

于 2020-06-15 发布
0 295
下载积分: 1 下载次数: 3

代码说明:

说明:  基于FMCW雷达的多天线定位系统,2018年英特尔杯嵌入式邀请赛作品。(Multi antenna positioning system based on FMCW radar)

文件列表:

fmcw_positioning_radar-master, 0 , 2018-06-23
fmcw_positioning_radar-master\.gitattributes, 0 , 2018-06-23
fmcw_positioning_radar-master\.gitignore, 3595 , 2018-06-23
fmcw_positioning_radar-master\README.md, 9220 , 2018-06-23
fmcw_positioning_radar-master\ad4159, 0 , 2018-06-23
fmcw_positioning_radar-master\ad4159\ADF4159_settings_2000Hz_2700MHz_3700MHz.txt, 220 , 2018-06-23
fmcw_positioning_radar-master\data, 0 , 2018-06-23
fmcw_positioning_radar-master\data\heatMap_200kHz_2000rps_4rpf_4t12r_multi_targets.avi, 34027008 , 2018-06-23
fmcw_positioning_radar-master\data\heatMap_200kHz_2000rps_4rpf_4t12r_two_targets.avi, 20050944 , 2018-06-23
fmcw_positioning_radar-master\data\heatMap_200kHz_2000rps_4rpf_4t12r_two_targets.mat, 133 , 2018-06-23
fmcw_positioning_radar-master\data\heatMap_500kHz_2000rps_4rpf_4t12r_txline2_multipath_effect.avi, 6970880 , 2018-06-23
fmcw_positioning_radar-master\data\heatMap_500kHz_2000rps_4rpf_4t12r_txrand_multipath_effect.avi, 7300608 , 2018-06-23
fmcw_positioning_radar-master\images, 0 , 2018-06-23
fmcw_positioning_radar-master\images\angsPo2Car.jpg, 67679 , 2018-06-23
fmcw_positioning_radar-master\images\facD.jpg, 32567 , 2018-06-23
fmcw_positioning_radar-master\images\heatMapPoAll.gif, 2113373 , 2018-06-23
fmcw_positioning_radar-master\images\heatMapPoBac.gif, 2094093 , 2018-06-23
fmcw_positioning_radar-master\images\heatMapPoBw.gif, 1280998 , 2018-06-23
fmcw_positioning_radar-master\images\heatMapPoFil.gif, 1712083 , 2018-06-23
fmcw_positioning_radar-master\images\heatMapPoFor.gif, 1366710 , 2018-06-23
fmcw_positioning_radar-master\images\heatMapPoMultiRemove.gif, 1696347 , 2018-06-23
fmcw_positioning_radar-master\images\heatMapTarget.gif, 1478066 , 2018-06-23
fmcw_positioning_radar-master\images\yLoCut.gif, 10680708 , 2018-06-23
fmcw_positioning_radar-master\images\yLoRaw.gif, 2377427 , 2018-06-23
fmcw_positioning_radar-master\images\yLoSync.gif, 2376663 , 2018-06-23
fmcw_positioning_radar-master\images\斜坡同步信号定义.jpg, 217097 , 2018-06-23
fmcw_positioning_radar-master\matlab, 0 , 2018-06-23
fmcw_positioning_radar-master\matlab\classify_by_frame.m, 804 , 2018-06-23
fmcw_positioning_radar-master\matlab\fallClassifierByFrame.m, 1355 , 2018-06-23
fmcw_positioning_radar-master\matlab\fallClassifierByWindow.m, 1353 , 2018-06-23
fmcw_positioning_radar-master\matlab\getPsWcen.m, 303 , 2018-06-23
fmcw_positioning_radar-master\matlab\iMax2d.m, 196 , 2018-06-23
fmcw_positioning_radar-master\matlab\isPo2coor.m, 144 , 2018-06-23
fmcw_positioning_radar-master\matlab\log2array.m, 196 , 2018-06-23
fmcw_positioning_radar-master\matlab\log2array_example.m, 440 , 2018-06-23
fmcw_positioning_radar-master\matlab\multi_targets_tracking_test.m, 1638 , 2018-06-23
fmcw_positioning_radar-master\matlab\ppt_video_cut.m, 3894 , 2018-06-23
fmcw_positioning_radar-master\matlab\ppt_yLo_gif.m, 1198 , 2018-06-23
fmcw_positioning_radar-master\matlab\rfcapture3d_get_background.m, 2000 , 2018-06-23
fmcw_positioning_radar-master\matlab\rfcapture3d_imaging.m, 7683 , 2018-06-23
fmcw_positioning_radar-master\matlab\rfcapture3d_imaging_C2F.m, 9376 , 2018-06-23
fmcw_positioning_radar-master\matlab\rfcapture3d_psZsum_label.m, 1310 , 2018-06-23
fmcw_positioning_radar-master\matlab\rfcapture3d_psZsum_sampleprepare.m, 2618 , 2018-06-23
fmcw_positioning_radar-master\matlab\rfcapture3d_psZsum_show.m, 610 , 2018-06-23
fmcw_positioning_radar-master\matlab\rfcapture3d_sim.m, 4066 , 2018-06-23
fmcw_positioning_radar-master\matlab\rfcapture3d_sim_C2F.m, 2502 , 2018-06-23
fmcw_positioning_radar-master\matlab\rfcapture3d_tracking_C2F.m, 7075 , 2018-06-23
fmcw_positioning_radar-master\matlab\rfcapture3d_tracking_cut_valid.m, 1189 , 2018-06-23
fmcw_positioning_radar-master\matlab\rfcaptureC2F.m, 2431 , 2018-06-23
fmcw_positioning_radar-master\matlab\rfcaptureC2F2.m, 2513 , 2018-06-23
fmcw_positioning_radar-master\matlab\rfcaptureC2F2sim.m, 2250 , 2018-06-23
fmcw_positioning_radar-master\matlab\rfcaptureC2Fsim.m, 2404 , 2018-06-23
fmcw_positioning_radar-master\matlab\rfcaptureCo2F.m, 1801 , 2018-06-23
fmcw_positioning_radar-master\matlab\rfcaptureF2ps.m, 810 , 2018-06-23
fmcw_positioning_radar-master\matlab\showProjectedHeatmaps.m, 540 , 2018-06-23
fmcw_positioning_radar-master\mcu, 0 , 2018-06-23
fmcw_positioning_radar-master\mcu\README.md, 1228 , 2018-06-23
fmcw_positioning_radar-master\mcu\antenna_switch_mbed, 0 , 2018-06-23
fmcw_positioning_radar-master\mcu\antenna_switch_mbed\antenna_switch_mbed-Debug.vgdbsettings, 5109 , 2018-06-23
fmcw_positioning_radar-master\mcu\antenna_switch_mbed\antenna_switch_mbed-Release.vgdbsettings, 5048 , 2018-06-23
fmcw_positioning_radar-master\mcu\antenna_switch_mbed\antenna_switch_mbed.sln, 1136 , 2018-06-23
fmcw_positioning_radar-master\mcu\antenna_switch_mbed\antenna_switch_mbed.vcxproj, 36969 , 2018-06-23
fmcw_positioning_radar-master\mcu\antenna_switch_mbed\antenna_switch_mbed.vcxproj.filters, 62655 , 2018-06-23
fmcw_positioning_radar-master\mcu\antenna_switch_mbed\main.cpp, 1067 , 2018-06-23
fmcw_positioning_radar-master\mcu\antenna_switch_mbed\mbed.props, 3556 , 2018-06-23
fmcw_positioning_radar-master\mcu\antenna_switch_mbed\mbed.xml, 2233 , 2018-06-23
fmcw_positioning_radar-master\simulink, 0 , 2018-06-23
fmcw_positioning_radar-master\simulink\CoorOutlierRemoverAndFilter.slx, 21893 , 2018-06-23
fmcw_positioning_radar-master\simulink\DelayAndTargetOverlaying.slx, 25608 , 2018-06-23
fmcw_positioning_radar-master\simulink\RadarImagingAndPositioning.slx, 48289 , 2018-06-23
fmcw_positioning_radar-master\simulink\fpga_fft2_test.slx, 18971 , 2018-06-23
fmcw_positioning_radar-master\simulink\usrp_4t12r_heatmap.slx, 23592 , 2018-06-23
fmcw_positioning_radar-master\simulink\usrp_4t12r_heatmap_log.slx, 53943 , 2018-06-23

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • J2
    说明:  关于J2塑性流动理论的金属3的材料本构隐式子程序umat(Implicit Subprogram UMAT for Material Constitutive of Metal 3 in J2 Plastic Flow Theory)
    2019-03-20 13:16:17下载
    积分:1
  • shark
    一个水下无人自主航行器(AUV)的MATLAB/simulink仿真程序,写得很详细,有附带的s函数和m文件供参考学习。(A MATLAB / Simulink simulation program for Unmanned Unmanned Unmanned Underwater Vehicle (AUV) is written in great detail, with s functions and M files attached for reference.)
    2020-11-06 19:49:49下载
    积分:1
  • amra
    说明:  用amra实现的风电功率预测,代码可直接运行(Wind power forecasting realized by amra, the code can run directly)
    2020-11-16 21:09:40下载
    积分:1
  • Desktop
    abaqus 帮助文档中的蠕变本构模型,包括时效强化模型和应变强化模型,以及一个模型的inp文件(Creep constitutive model in abaqus help document, including time-based reinforcement model and strain reinforcement model, and inp file of a model)
    2020-06-22 16:00:01下载
    积分:1
  • SA-SVM
    模拟退火算法与支持向量机算法的结合,提高了效率与精度(The combination of simulated annealing algorithm and support vector machine algorithm improves efficiency and accuracy.)
    2018-09-25 15:26:09下载
    积分:1
  • randomgraph
    这个程序是通过设置不同的参数来创建一个随机图,可以运行。(This program is to create a random graph for simulation.)
    2020-06-19 01:40:01下载
    积分:1
  • Matlab_ISR Model
    Incoherent Scatter Radar model in Matlab. To calculate the theoretical spectra of radars.
    2020-06-17 05:00:02下载
    积分:1
  • DE优化函数程序
    大坝变形的精确预测对其安全评价方面发挥着重要作用。为了进一步提高大坝变形预测精度,提出了一种改进的灰狼算法优化支持向量机的预测模型。通过引入非线性收敛因子和采用动态加权策略,提升灰狼算法优化支持向量机惩罚因子和核函数参数的能力,并以优化的参数来建立支持向量机大坝变形预测模型。选取实例数据,在与布谷鸟算法、差分进化算法、粒子群算法、基本灰狼算法优化的支持向量机预测比较中,实验结果表明,改进的灰狼算法对支持向量机参数的优化是有效的,可以提高大坝变形预测精度。(Accurate prediction of dam deformation plays an important role in its safety evaluation. In order to further improve the prediction accuracy of dam deformation, an improved grey Wolf algorithm is proposed to optimize the prediction model of support vector machine. By introducing the nonlinear convergence factor and using the dynamic weighting strategy, the gray wolf algorithm is improved to optimize the capacity of the support vector machine penalty factor and the kernel parameter, and the support vector machine dam deformation prediction model is established with the optimized parameters. The experimental results show that the Improved Grey Wolf algorithm is effective for the optimization of support vector machine parameters, and it can improve the accuracy of the deformation prediction of the dam.)
    2018-06-28 09:53:07下载
    积分:1
  • 基于pid糊预测
    根据一设定运动轨迹进行模糊pid观测器设定,让后进行跟踪,实现有效跟踪。(According to a set motion trajectory, the fuzzy PID observer is set, and then the tracking is carried out to achieve effective tracking.)
    2019-05-30 08:16:18下载
    积分:1
  • ABAQUS技巧积累
    abaqus 使用技巧-Inp文件中单元类型改变时,一定要注意,划分网格的时候是否,选用了一种望各类型,比如4变形和3变形的区别,如果用注意将所有的单元类型都做相应的修改。这说明单元类型由2个因素决定,1网格形状,2计算任务.(Abaqus tips-When changing the unit type in the Inp file, be sure to pay attention to whether or not to select a type, such as 4 deformation and 3 deformation, if you use the attention, all the unit types should be modified accordingly. This shows that the unit type is determined by two factors, 1 grid shape, 2 calculation tasks.)
    2018-07-09 10:28:03下载
    积分:1
  • 696516资源总数
  • 106459会员总数
  • 0今日下载