登录
首页 » Others » ieee 33节点

ieee 33节点

于 2020-11-03 发布
0 297
下载积分: 1 下载次数: 6

代码说明:

IEEE 33节点的潮流计算图 是配电网的 可用于课程设计

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • C++ GUI Qt5实战-ppt
    Qt是一个跨平台的C++图形用户界面应用程序框架。它为应用程序开发者提供建立艺术级图形用户界面所需的所有功能。它是完全面向对象的,很容易扩展,并且允许真正的组件编程本资料采用PPT文档,共分23章详细介绍QT5技巧
    2021-05-06下载
    积分:1
  • 稀疏自码深度学习的Matlab实现
    稀疏自编码深度学习的Matlab实现,sparse Auto coding,Matlab codetrain, m/7% CS294A/CS294W Programming Assignment Starter CodeInstructions%%%This file contains code that helps you get started ontheprogramming assignment. You will need to complete thecode in sampleIMAgEsml sparseAutoencoder Cost m and computeNumericalGradientml For the purpose of completing the assignment, you domot need tochange the code in this filecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencodtrain.m∥%%========%6% STEP 0: Here we provide the relevant parameters valuesthat willl allow your sparse autoencoder to get good filters; youdo not need to9 change the parameters belowvisibleSize =8*8; number of input unitshiddensize 25number of hidden unitssparsity Param =0.01; desired average activation ofthe hidden units7 (This was denoted by the greek alpharho, which looks like a lower-case pcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod4/57train.,m∥in the lecture notes)1 ambda=0.0001%o weight decay parameterbeta 3%o weight of sparsity penalty term%%==:79 STEP 1: Implement sampleIMAGESAfter implementing sampleIMAGES, the display_networkcommand shouldfo display a random sample of 200 patches from the datasetpatches sampleIMAgES;display_network(patches(:, randi(size(patches, 2), 204, 1)), 8)%为产生一个204维的列向量,每一维的值为0~10000curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod5/57train.m/v%中的随机数,说明是随机取204个 patch来显示%o Obtain random parameters thetatheta= initializeParameters ( hiddenSize, visibleSize)%%=============三三三三====================================97 STEP 2: Implement sparseAutoencoder CostYou can implement all of the components (squared errorcost, weight decay termsparsity penalty) in the cost function at once, butit may be easier to do%o it step-by-step and run gradient checking (see STEP3 after each stepWecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod6/57train. m vb suggest implementing the sparseAutoencoder Cost functionusing the following steps(a) Implement forward propagation in your neural networland implement the%squared error term of the cost function. Implementbackpropagation tocompute the derivatives. Then (using lambda=beta=(run gradient Checking%to verify that the calculations corresponding tothe squared error costterm are correctcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod7/57train. m vl(b) Add in the weight decay term (in both the cost funcand the derivativecalculations), then re-run Gradient Checking toverify correctnessl (c) Add in the sparsity penalty term, then re-run gradiChecking toverify correctnessFeel free to change the training settings when debuggingyour%o code. (For example, reducing the training set sizecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod8/57train m vl/number of hidden units may make your code run fasterand setting betaand/or lambda to zero may be helpful for debuggingHowever, in yourfinal submission of the visualized weights, please useparameters web gave in Step 0 abovecoS七grad]sparseAutoencoderCost(theta, visibleSize,hiddensize, lambda,sparsityParam, beta,patches)二〓二二二二二二二〓二〓二〓二〓=二====〓=curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod9/57train.m vlll96% STeP 3: Gradient CheckingHint: If you are debugging your code, performing gradienchecking on smaller modelsand smaller training sets (e. g, using only 10 trainingexamples and 1-2 hiddenunits) may speed things upl First, lets make sure your numerical gradient computationis correct for a%o simple function. After you have implemented computeNumerun the followingcheckNumericalGradientocurer:YiBinYUyuyibintony@163.com,WuYiUniversityDeep Learning, MATLAB Code for Sparse Autoencode10/57
    2020-12-05下载
    积分:1
  • TIA博途软件与S7-12001500+PLC应用详解.iso
    TIA博途软件与S7-12001500+PLC应用详解.iso
    2020-11-30下载
    积分:1
  • matlab材料力学剪力图弯矩图绘制
    matlab程序仿真材料力学剪力弯矩公式
    2021-05-06下载
    积分:1
  • LENOVO/联想 启天M7150 升级BIOS 版本90KT22C
    LENOVO/联想启天M7150 BIOS的升级程序,在DOS下直接运行MB.BAT即可升级 版本号90KT22C解决电脑不能安装64位操作系统的问题
    2020-12-04下载
    积分:1
  • 图像工(上册)图像处理 章毓晋课后答案
    图像工程(上册)图像处理 章毓晋课后答案,值得下载!
    2020-12-06下载
    积分:1
  • PLL锁相环simulink仿真.zip
    【实例简介】基于simulink的锁相环PLL仿真,基于simulink的锁相环PLL仿真,基于simulink的锁相环PLL仿真,基于simulink的锁相环PLL仿真
    2021-12-04 00:46:02下载
    积分:1
  • python实现谱聚类代码并进行可视化
    python实现谱聚类代码并进行可视化,内涵样例数据集和代码
    2020-12-01下载
    积分:1
  • 计算机科学引论重点知识及课后答案.docx(103页)
    计算机科学引论重点知识及课后答案,里面包含习题讲解,课后专业单词翻译非常全
    2020-03-12下载
    积分:1
  • AUTOSAR DCM标准
    AUTOSAR 4.2版本的DCM规范。定义故障诊断通信的相关功能、接口函数、配置。
    2020-12-03下载
    积分:1
  • 696518资源总数
  • 105540会员总数
  • 37今日下载