登录
首页 » Others » 【免费】浙江大学计算方法课件

【免费】浙江大学计算方法课件

于 2020-11-02 发布
0 160
下载积分: 1 下载次数: 1

代码说明:

浙江大学计算方法全套课件,内容包括线性代数方程组 非线性方程求根 数值积分 数值微分 微分方程 特征值与特征向量 等

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Introduction.to.Stochastic.Processes.with.R
    An introduction to stochastic processes through the use of RIntroduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The uINTRODUCTIONTO STOCHASTICPROCESSES WITH RINTRODUCTIONTO STOCHASTICPROCESSES WITH RROBERT P DOBROWWILEYCopyright o 2016 by John Wiley Sons, Inc. All rights reservedPublished by John Wiley Sons, Inc, Hoboken, New JerseyPublished simultaneously in CanadaNo part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form orby any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except aspermitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the priorwritten permission of the Publisher, or authorization through payment of the appropriate per-copy fee tothe Copyright Clearance Center, Inc, 222 Rosewood Drive, Danvers, MA,(978)750-8400, fax978)750-4470,oronthewebatwww.copyright.comRequeststothePublisherforpermissionshouldbe addressed to the Permissions Department, John Wiley sons, Inc, lll River Street, Hoboken, NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/go/permissionsLimit of liability/ Disclaimer of warranty While the publisher and author have used their best efforts inpreparing this book, they make no representations or warranties with respect to the accuracy orcompleteness of the contents of this book and specifically disclaim any implied warranties ofmerchantability or fitness for a particular purpose. No warranty may be created or extended by salesrepresentatives or written sales materials. The advice and strategies contained herein may not be suitablefor your situation. You should consult with a professional where appropriate. Neither the publisher norauthor shall be liable for any loss of profit or any other commercial damages, including but not limited tospecial, incidental, consequential, or other damagesFor general information on our other products and services or for technical support, please contact ourCustomer Care Department within the United States at(800)762-2974, outside the United States at(317)572-3993 or fax(317)572-4002Wiley also publishes its books in a variety of electronic formats. Some content that appears in print maynot be available in electronic formats. For more information about Wiley products, visit our web site atwww.wiley.comLibrary of Congress Cataloging-in-Publication Data:Dobrow. Robert p. authorIntroduction to stochastic processes with r/ Robert P. Dobrowpages cmIncludes bibliographical references and indexISBN978-1-118-74065-1( cloth)1. Stochastic processes. 2. R( Computer program language)I. TitleQC20.7.S8D6320165192′302855133-dc232015032706Set in 10/12pt, Times-Roman by SPi Global, Chennai, IndiaPrinted in the united states of america1098765432112016To my familyCONTENTSPrefaceAcknowledgmentsList of Symbols and Notationabout the companion Website1 Introduction and review1.1 Deterministic and stochastic models. 11. 2 What is a Stochastic Process? 61. 3 Monte Carlo Simulation. 91.4 Conditional Probability, 101. 5 Conditional Expectation, 18Exercises. 342 Markov Chains: First Steps402.1 Introduction. 402.2 Markov Chain Cornucopia, 422.3 Basic Computations, 522. 4 Long-Term behavior-the Numerical evidence, 592.5 Simulation. 652.6 Mathematical Induction*. 68Exercises. 70CONTENTS3 Markov Chains for the long term763.1 Limiting Distrib763.2 Stationary Distribution, 803.3 Can you find the way to state a? 943.4 Irreducible markov Chains. 1033.5 Periodicity, 1063.6 Ergodic Markov Chains, 1093.7 Time Reversibility, 1143.8 Absorbing Chains, 1199 Regeneration and the strong markov property 1333.10 Proofs of limit Theorems*, 135Exercises. 1444 Branching processes1584.1 Introduction. 1584.2 Mean Generation Size. 1604.3 Probability Generating Functions, 1644.4 Extinction is Forever. 168Exercises. 1755 Markov Chain Monte Carlo1815.1 Introduction. 1815.2 Metropolis-Hastings Algorithm, 1875.3 Gibbs Sampler, 1975.4 Perfect Sampling*, 20.55.5 Rate of Convergence: the Eigenvalue Connection*, 2105.6 Card Shuffing and Total Variation Distance. 212Exercises. 2196 Poisson process2236.1 Introduction. 2236.2 Arrival. Interarrival Times. 2276.3 Infinitesimal Probabilities. 2346.4 Thinning, Superposition, 2386.5 Uniform Distribution. 2436.6 Spatial Poisson Process, 2496.7 Nonhomogeneous Poisson Process. 2536.8 Parting Paradox, 255Exercises. 2587 Continuous- Time markov Chains2657.1 Introduction. 265
    2020-12-10下载
    积分:1
  • 雷达箔条干扰原理.pdf
    【实例简介】这是国内出版的一本关于雷达无源干扰方面的好书
    2021-11-24 00:49:54下载
    积分:1
  • 多目标moead优化方法
    基于种群分解,使用主元分析进行聚类分析和种群生成,种群进化使用NSGA-II选择机制,
    2020-12-11下载
    积分:1
  • C#卷积神经网络代码
    用c#实现卷积神经网络,可以训练识别图片,代码按照卷积神经网络算法思路撰写,准确率
    2020-07-04下载
    积分:1
  • 在Simulink中利用simmechanics对三自由度的串联机械臂进行仿真
    在Simulink中利用simmechanics对三自由度的串联机械臂进行仿真
    2020-11-28下载
    积分:1
  • 行为识别数据集
    总结了行为识别方面常用的数据集,主要包括国外的行为识别数据集
    2020-12-07下载
    积分:1
  • 两个向量间的互信息 Mutual information.m
    【实例简介】Mutual information可计算出两列向量之间的互信息,代码内有详细的注释,是信息理论领域常用的函数。
    2021-11-30 00:51:59下载
    积分:1
  • LDA数学八卦.pdf
    LDA是一个在文本建模中很著名的模型,类似于SVD、PLSA等。这个模型涉及到的数学知识较多,包括Gamma函数、Dirichlet分布、Gibbs Sampling、Variational Inference、贝叶斯文本建模、PLSA建模、LDA文本建模。 【核心代码】
    2020-06-30下载
    积分:1
  • Scratch 猴子接香蕉 小游戏源码
    本人QQ7049256,共同研究,一起进步。
    2020-11-04下载
    积分:1
  • 图像数据集
    包含十种物体,每一类100张图片,已经分好测试集和训练集了,小样本量的数据集,挺好用
    2020-12-10下载
    积分:1
  • 696516资源总数
  • 106409会员总数
  • 8今日下载