登录
首页 » Others » 数据结构c语言版期末考试复习题库

数据结构c语言版期末考试复习题库

于 2020-11-27 发布
0 217
下载积分: 1 下载次数: 0

代码说明:

数据结构c语言版期末考试复习题库,包括选择题,填空题,简答题以及程序设计题

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • ad7606的verilog实现
    基于verilog的ad7606多通道数据采样实现,支持串口,RAM数据存储
    2020-12-06下载
    积分:1
  • 剔除测量数据中异常值的若干方法
    剔除测量数据中异常值的若干方法,第1期何平:剔除测量数据中异常值的若干方法21表3n,a相应的Y值3.91-00.010.010.6790.576190.4620.889).765120.6420.5460.5350.4500.7800.642130.6150.52l210.5240.44060.6980.560140.6410.5460.5140.4300.6370.507150.616230.50580.6830.554160.5950.5070.4130).406100.447180.5610.475表4Z,与n值的对应关系3458902131415161820301050zc1.381.541.651.731.801.881.921.962.002.032.072.102.132.152.202.242.392.492.58表51组测量数据(已按顺序从小到大排好)810t20.3020.3920.3920.3920.4020.4020.4]20.4120.4220.4220.4220.4320.4320.4320.43查表3得到临界值Y。(15,0.05)=0.525,根据也都有其局限性。例如:所有的准则都是以数据按正态狄克逊准则,由于Y2>%(15,0.05),故t值是异常分布为前提的,当偏离正态分布时,判断的可靠性将受值,应予舍弃。影响。还有几个准则对n值的要求也各有不同:当大样程序框图如图3所示本测定时,使用莱因达准则最适合,但当小样本测定24肖维勒准则应用软件流程图及实例时,则一般推荐使用格拉布斯准则和狄克逊准则。而肖计算算术平均值t=20.405维勒准则在某种程度上讲仅仅是莱因达准则的补充计算剩余误差v及均方差a=0.01498在实际测量中,一般取测量次数n=5~20次,特从表4中查得相应的Z值(n=15,故Z2=2.13)别精密的测量,也很少超过100~200次。因此,使用根据肖维勒准则检测l1是否为异常值以上各种准则时,必须注意测量次数的限制。对于莱因1-t|=0.105达准则、一般建议测量次数大于或等于50次,而对于而Zσ=2.13×0.01498≈0.03191格拉布斯准则和狄克逊准则,则建议小于或等于20次。但这一区别并不是十分严格的由于|1-t1>z,则t1值异常,应予舍弃。程序框图对小样本来说,由于格拉布斯准则能给出较严格如图4所示。的结果,狄克逊准则无需计算X和o,方法简便,且23几种方法的进一步讨论者的概率意义明确。因此,它们能较好地适用于采样次从以上的应用情况来看,似乎各种准则的应用实数不太多的一般测量列践都很一致,但这只是个特例,并没有普遍性。举这个设X为N(0,1),在1个大小为n的子样中混入例子,只为了更好地说明几种准则都能得到很好的应个Y:N(μ,δ)的子样。有研究结果表明:格拉布用。需要指出的是,以上各准则都是人为主观拟定的,斯方法的检出概率P略高于狄克逊方法的检出概率直到目前为止,还没有统一的规定,因此,它们的应用PD,如表6所示:(N(0,1)叫作标准正态分布)o1994-2012ChinaAcademicJournalElectronicpUblishingHouse.Allrightsreservedhttp://www.cnki.net2航空计测技术第15卷STARTSTARTSTARTSTART输入数据输入数据输入数据输入数据计算算术平均值入计x根据n值,及均方根偏差从表2中计算出相应y计算算术平均值计算剩余误差;,计算T值并选定均方根偏差σ危险率a选定危险率a计算剩余误差v,均方根偏差判别粗大误差查表得相应的(n,a)从表3中查出%(n,a)值从表4中查出相应Z值打印输出结果判别数据是否为异常?判别敦据是否异常判别粗大误差ENDExDENDEND图1莱因达准则应图2格拉布斯准则图3狄克逊准则应图4肖维勒准则应用程序框图应用程序框图用程序框图用程序框图表6P与PD的比较舍。但是,对待粗大误差,除从测量结果中及时发现和利用剔除原则鉴别外,更重要的是提高工作人员的技术a(%)水平和工作责任心,不要在情绪不宁和极度疲劳的情况5.01.0下,进行重要的测量工作。另外,要保证测量条件的稳定,防止因环境条件剧烈变化而产生的突变影响。只有δ11221122这样,才能提高测量的精度,得到满意的测量结果PG(%)10.240.429.854.22.515.712.731.3参考文献PD(%)9.335.726.850.02.212.910.526.31梁晋文等编著.误差理论与数据处理.北京:中国计由于混入的Y不一定是子样中最大的数据,所以,量出版社,1989实际检出效果还要高一些2何国伟编著,误差分析方法.北京:国防工业出版社,4结束语3王文松.测量列中离群值的判断.电测与仪表,1992,从以上论述可以看出,在进行测量数据处理时,可11)以应用各种准则进行粗大误差判别,以决定数据的取o1994-2012ChinaAcademicJournalElectronicpUblishingHouse.Allrightsreservedhttp://www.cnki.net
    2021-05-06下载
    积分:1
  • 手机摄像头检测心率脉搏开源代码
    用高光(摄像头旁的 LED 闪光灯,或者其他足够亮的光源也可)照亮指尖皮下毛细血管,当心脏将新鲜的血液压入毛细血管时,亮度(红色的深度)会有轻微变化,通过摄像头监测这一有规律变化的间隔,即可算出心跳了
    2020-05-31下载
    积分:1
  • 谐波检测+word说明.zip
    【实例简介】通过IP-IQ和FFT方法对谐波进行检测,计算电网畸形了。并附有word说明。
    2021-12-10 00:36:07下载
    积分:1
  • 重复控制器的matlab/simulink仿真
    使用simulink做的重复控制器的仿真
    2020-11-28下载
    积分:1
  • JAVA坦克大战游戏开发毕业论文
    1 绪论人类进入21世纪,全球一体化,互联网就起到重要的作用,而且随着互联网的不断发展,信息技术逐渐发展壮大,将成为网络经济的核心。其中计算机、网络通信的发展最为迅速。在现今电子信息高速发展的时代,游戏已经深入到人们的日常生活中,成为老少皆宜的娱乐方式[1]。1.1 游戏设计目的及定义基本要求:游戏开发的总体任务是实现游戏的可操作性,以及界面的美观性。整个开发过程遵循Java软件的规定,采用JAVA GUI编程来实现界面及事件的控制,用户根据键盘的四个方向键的按键状态确定Tank方向,根据方向进行下一步的移动(move),通过F2来复活,CTRL键来发射炮弹等功能。目标:通过游戏的
    2020-12-11下载
    积分:1
  • 自抗扰控制 PMSM模型
    永磁同步电机自抗扰控制部分用m文件实现,灵活可以实现不同非线性程度的跟踪微分器、观测器、控制率
    2020-11-28下载
    积分:1
  • 使用JSP内置对象:1、设计教师与学生不同登陆界面:在同页面上设计两个单选按钮(教师、学生),当点击提交按钮后,进入相应的教师或学生登录JSP页面。
    学习JAVA内置对象实验,1、设计教师与学生不同登陆界面:在同一页面上设计两个单选按钮(教师、学生),当点击提交按钮后,进入相应的教师或学生登录JSP页面。当用户名及密码均正确时,进入欢迎界面;如果两者其一不正确就要提醒需要重新输入。2、参照任一电子商城的注册页面,编写一个用户注册的页面(register.html),提交后由register.jsp负责处理,并将用户信息在网页上输出(使用out);3、编写程序,实现3秒后自动跳转到指定的某页面的功能。
    2020-12-07下载
    积分:1
  • Qt调用摄像头并实现截图功能.zip
    【实例简介】Qt调用摄像头,并实现截图以及图像加载,后续打算实现一些模式识别的功能,比如人脸识别什么的。
    2021-11-29 00:32:05下载
    积分:1
  • 转子系统固有频率的传递矩阵计算方法及其MATLAB实现
    文章介绍了计算多自由度转子系统固有频率的传递矩阵法,以及用于实现该算法的Prohl法和Riccati 法的推导过程。利用Matlab 强大的绘图计算功能和改进的Riccati 传递矩阵法所具有的良好的数值稳定性,避免了传统的Prohl 传递矩阵法在计算过程中的丢根现象,提高了整个转子系统分析运算的精度。并用Matlab 对各算法的数值稳定性进行了分析。190其中112,21,2对应于(3)式的矩阵各项。将式(6)展开,得:}+1=11M}+12引入如下的 Riccal变换式中[]就是ca传递矩阵,它是一个2×2阶的待定矩阵,把式(8)代人式(7)式中得这就是 Riccait递推公式。由起始截面的边界条件(门1=0,(e小)≠0固有初始条件[S]=[0]。代人式(9)就可依次递推[S,[,.S对末端截面N+1有:由边界条件{门}x1-{0},{e≠0故得(10)式有解的条件是:+和PωM/法一样,在感兴趣的范围内按一定的步长选定试算频率计算出剩余量S-值,就可以画出剩余量随a变化的曲线,曲线与横坐标交点所对应的转速就是转子的各界临界转速。在PmM的传递矩阵法中,是用r阶的矩阵递推来求剩余量△(o2)。在Bceb的传递矩阵法中是用r/2阶的矩阵国递推来求剩余量S×+1,由于与的递推式中含有逆矩阵,使得剩余量曲线经常会出现异号无穷型奇点。因而在常见的转子动力系统中,剩余量曲线的根和奇点的位置十分接近。在实际转子系统中,临界转速值与奇点值间的间隔可能少于10/m,因此这种方法的丢根现象不可避免。参考PnoM方法中剩余量△(a2)无奇点的事实,可以对 riccati方法中的剩余量加以改造。由式(10)得+1n{%+12]1{}依次类推{}[]+∏[2+21{12在满足相同边界条件时应有△1=[]L21320064事实上(12)式就是(5)式,只是在数值计算中,它们是按不同的方法递推而得到的。因此在数值上它们的精度也不同。当PmM法出现数值不稳定时,(13)式所示的剩余量仍然保持相当的精度。由于剩余量(o2)随0变化的曲线不存在奇点,因此以作剩余量的曲线也不存在奇点。由于(12)式中un+ux]在进行S的递推过程中都已求得,所以在计算时也不会增加太多的工作量,但却可以克服丟根的缺点。事实上(13)式是把(11)式的异号无穷型奇点变为同号无穷型奇点,这样只有当跨过一个真正的根时才变号。枚除了两个临界转速值非常接近的情况,即当两临界转速的差小于所选步长时,一般不会发生漏根。三利用MmMh编制PmM/法、Bicn法及改进的kKRiccati法的程序对各算法结果进行分析。运用算例:如图转子系统简化模型,其数据如下1转子系统简化模型2.94t=588t(=236)1.3m(=1,2,,6)29592×10(kN·m)(i=1,2,)6)支承简化为如图模型相应参数为1.9600×106kN.m-1;2.7048×10kN·m=3.5771(=1,2)编制Maab程序运行待如下表所示的各阶频率。从表1可以看出在 Protel法的计算结果中,小于1058239rad/s固有频率共计算出了7个, Ricca算法计算出了13个固有频率,而改进了的ieai算法在消除奇点干扰后可以计算出17个固有频率。从而明显的看出改进的Racm法可以很好的避免计算过程中的丢根,在数值上具有很好的稳定性。计算细果慧裝protel算法(rads)Riccati算法(rads)改进的 Riccati算法(rad/s190.812100.815208249197.895197.895445924208.245208.24522.9655646.410445.9256832.610458.175458.1751058.239539925539925580.l659646.415574.265759.225580.165832.615646.415987.0057150451058.23583261516987.0051058.235利用a的绘图功能我们可以直观的从图中分析岀各算法的漏根现黎如图2、图3、图4所示:1912P法计算恩有单率输出固像1eg法计算回有率出四像t”改进计算有率始步入从图2、图3、图4可以看出在530到580的频率区间上,前两条曲线与0轴只有一个交点即所求固有频率为539925a/s的点,第三条曲线在相同的区间上与0轴的交点为三个,显然改进的 mccall方法找回了漏掉的根550.225ad/s和574265rad/s。利用 Matlab程序绘图我们还可以绘出改进的 Riccati方法把异号无穷型奇点转化成了同号的无穷型奇点的情况,如图5、图6所示。从图中区间987ras到1090rad/s的曲线可以明显的看出图5曲线以0轴为对称轴倒置后即得到图6在此区间的曲线线形,从而改进了 Riccati算法,在曲线中,只有在跨过个真正的根时剩余量才变号。所以除了两个临界转速之差小于所选步长的情况除外,一般改进后的riccati算法不会发生丢根c算利0改进的热计算有明p1m0p三41000100在计算多自由度转子系统固有频率的传递矩阵法中,我们可以利用 Matlab编程实现Ph/法、 riccati法以及改进的Riea法对于系统固有频率的计算,利用Maab的绘图功能对各算法的结果进行直观的分析,从而明显的看出各算法的漏根情况。本文对于计算复杂的多自由度系统固有频率具有参考意义,也可用于复杂系统低阶固有频率的粗算。同时 Matlab的矩阵运算功能在传递矩阵法中也得到了充分的利用(Electromechanical Engineering Dept, Sichuan University of Science Engineering, Zigong 643000, China)This article introduced the transfer matrix method about the natural frequency calculation of themuulti- degrees freedom rotor system, as well as inferential reasoning process about Prohl law and thericcatilayUSing formidable cartography and computation function of the Matlab as well as the good value stability aboutimproved riccati law it avoided the losing of the natural frequency and enhanced the precision ofentire rotorsystem further analyze. The value stability of various algorithms areanalyzed with Matlab in the paper toorotor system; natural frequency; transfer matrix method; Matlab
    2020-12-04下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载