-
SAR目标仿真平台 点目标仿真
实现了SAR目标仿真平台的构建,详细的介绍了如何实现点目标回波数据的仿真和CS程序,并用MATLAB实验了实验平台,能够方便快捷的得到仿真数据。
- 2020-12-05下载
- 积分:1
-
平面变压器3D仿真资料
采用COMSOL软件,对平面变压器的仿真过程进行叙述,让大家了解平面变压器的仿真流程,是个很好的指导教材Solved with COMSOL Multiphysics 5.0Results and discussionThe magnetostatic analysis yields an inductance of 0. 1l mH and a dc resistance of0. 29 mQ2. Figure 2 shows the magnetic flux density norm and the electric potentialdistributionvolume: Coil potentiaL()Volume: Magnetic flux density norm (t▲0.07▲2.88×10-42.51.50.03050.01V656×107v0igure 2: Magnetic flux density norm and electric potential distribution for themagnetostatic analysisIn the static (DC) limit, the potential drop along the winding is purely resistive andcould in principle be computed separately and before the magnetic flux density iscomputed. When increasing the frequency, inductive effects start to limit the currentand skin effect makes it increasingly difficult to resolve the current distribution in thewinding. At sufficiently high frequency, the current is mainly flowing in a thin layernear the conductor surface. When increasing the frequency further. capacitive effectscome into play and current is flowing across the winding as displacement currentdensity. When going through the resonance frequency, the device goes from behavingas an inductor to become predominantly capacitive. At the self resonance, the resistivelosses peak due to the large internal currents Figure 4 shows the surface current3 MODELING OF A 3D INDUCTORSolved with COMSOL Multiphysics 5.0distribution atl MHz. Typical for high frequency the currents are displaced towardsthe edges of the conductor.freq(1)=1.0000E6_Surfaee: Surface-current density norm (A/)▲18618Q16010¥1.02Figure 3: Surface current density at I MHz (below the resonance frequency)Figure 4 shows how the resistive part of the coil impedance peaks at the resonancefrequency near 6MHz whereas Figure 5 shows how the reactive part of the coiimpedance changes sign and goes from inductive to capacitive when passing throughthe resonance4 MODELING OFA3DINDUCTORSolved with COMSOL Multiphysics 5.0Global: Lumped port impedance(Q2)d port impedance7.5G6.583275655545352510.10.20.30.40.509igure 4: Real part of the electric potential distribution5 MODELING OF A INDUCTORSolved with COMSOL Multiphysics 5.0Global: Lumped port impedance(Q2)35000Lumped port impedance200001000050000500010000-1500020000250000.10.20.30.40.50.60.70.809Figure 5: The reactive part of the coil impedance changes sign hen passing through theresonance frequency, going from inductive to capacitiveModel library path: ACDC_Module/Inductive_ Devices_and_coils/inductor 3dFrom the file menu. choose newNEWI In the new window click model wizardMODEL WIZARDI In the model wizard window click 3D2 In the Select physics tree, select AC/DC> Magnetic Fields(mf)3 Click Add4 Click StudyMODELING OF A3D NDUCTORSolved with COMSOL Multiphysics 5.05 In the Select study tree, select Preset Studies>StationaryGEOMETRYThe main geometry is imported from file. Air domains are typically not part of a CaDgeometry so they usually have to be added later. For convenience three additionaldomains have been defined in the CAd file. These are used to define a narrow feed gapwhere an excitation can be appliedport l(impl)I On the model toolbar, click Import2 In the Settings window for Import, locate the Import section3 Click Browse4 Browse to the models model library folder and double-click the filenductor 3d. mphbinSphere /(sphl)I On the Geometry toolbar, click Sphere2 In the Settings window for Sphere, locate the Size section3 In the Radius text field, type 0.2ick to expand the Layers section. In the table, enter the following settingsLayer nameThickness(m)ayer0.055 Click the Build All Objects buttonForm Union(fin)i On the Geometry toolbar, click Build AllClick the Zoom Extents button on the Graphics toolbar7 MODELING OF A 3D INDUCTORSolved with COMSOL Multiphysics 5.03 Click the Wireframe Rendering button on the Graphics toolbarThe geometry should now look as in the figure below0.1-0.10.20.0.0.1y0.0.2Next, define selections to be used when setting up materials and physics Start bdefining the domain group for the inductor winding and continue by adding otheruseful selectionsDEFINITIONSExplicitI On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Winding3 Select Domains 7,8 and 14 onlyI On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Gap3 Select domain 9 onlI On the Definitions toolbar, click Explicit8 MODELING OF A3DINDUCTORSolved with COMSOL Multiphysics 5.02 In the Settings window for Explicit, in the Label text field, type core3 Select Domain 6 onlyExplicit 4I On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type InfiniteElements3 Select Domains 1-4 and 10-13 onlyExplicit 5I On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Non-conducting3 Select Domains 1-6 and 9-13 onlyI On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Non-conductingwithout Ie3 Select Domains 5, 6, and 9 only.Infinite Element Domain /(iel)Use infinite elements to emulate an infinite open space surrounding the inductorI On the definitions toolbar click Infinite element domain2 In the Settings window for Infinite Element Domain, locate the Domain Selectionsection3 From the Selection list. choose Infinite Elements4 Locate the Geometry section From the Type list, choose SphericalNext define the material settingsADD MATERIALI On the Model toolbar, click Add Material to open the add Material window2 Go to the Add material window3 In the tree, select AC/DC>Copper.4 Click Add to Component in the window toolbar9 MODELING OF A 3D INDUCTORSolved with COMSOL Multiphysics 5.0MATERIALSCopper(mat/)I In the Model Builder window, under Component I(comp l)>Materials click Copper(matD)2 In the Settings window for Material, locate the Geometric Entity Selection section3 From the Selection list, choose windingADD MATERIALI Go to the Add Material window2 In the tree. select built-In>Air3 Click Add to Component in the window toolbarMATERIALSAir(mat2I In the Model Builder window, under Component I(comp l)>Materials click Air(mat2)2 In the Settings window for Material, locate the Geometric Entity Selection section3 From the Selection list, choose Non-conductingThe core material is not part of the material library so it is entered as a user-definedmateriaMaterial 3(mat3)I In the Model Builder window, right-click Materials and choose Blank Material2 In the Settings window for Material, in the Label text field, type Core3 Locate the geometric Entity Selection section4 From the selection list choose Core5 Locate the Material Contents section. In the table, enter the following settingsPropertName Value Unit Property groupElectrical conductivity sigma0S/IBasicRelative permittivity epsilonrBasicRelative permeability mur1e3Basic6 On the model toolbar. click Add Material to close the Add Material windowMAGNETIC FIELDS (MF)Select Domains 1-8 and 10-14 only0MODELING OF A 3D INDUCTOR
- 2020-12-10下载
- 积分:1
-
基于协同表示的人脸识别代码
基于协同表示的人脸识别matlab代码,文章出处:L zhang等的“Sparse Representation or Collaborative Representation: Which Helps Face Recognition? ”
- 2020-12-11下载
- 积分:1
-
用verilog编写的sigma-delta adc例子
用verilog编写的sigma-delta adc例子
- 2020-12-07下载
- 积分:1
-
基于模板匹配的人脸检测-教程-matlab代码
基于模板匹配的人脸检测-教程-matlab代码,包括m文件,图片
- 2020-12-03下载
- 积分:1
-
Introduction.to.Stochastic.Processes.with.R
An introduction to stochastic processes through the use of RIntroduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The uINTRODUCTIONTO STOCHASTICPROCESSES WITH RINTRODUCTIONTO STOCHASTICPROCESSES WITH RROBERT P DOBROWWILEYCopyright o 2016 by John Wiley Sons, Inc. All rights reservedPublished by John Wiley Sons, Inc, Hoboken, New JerseyPublished simultaneously in CanadaNo part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form orby any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except aspermitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the priorwritten permission of the Publisher, or authorization through payment of the appropriate per-copy fee tothe Copyright Clearance Center, Inc, 222 Rosewood Drive, Danvers, MA,(978)750-8400, fax978)750-4470,oronthewebatwww.copyright.comRequeststothePublisherforpermissionshouldbe addressed to the Permissions Department, John Wiley sons, Inc, lll River Street, Hoboken, NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/go/permissionsLimit of liability/ Disclaimer of warranty While the publisher and author have used their best efforts inpreparing this book, they make no representations or warranties with respect to the accuracy orcompleteness of the contents of this book and specifically disclaim any implied warranties ofmerchantability or fitness for a particular purpose. No warranty may be created or extended by salesrepresentatives or written sales materials. The advice and strategies contained herein may not be suitablefor your situation. You should consult with a professional where appropriate. Neither the publisher norauthor shall be liable for any loss of profit or any other commercial damages, including but not limited tospecial, incidental, consequential, or other damagesFor general information on our other products and services or for technical support, please contact ourCustomer Care Department within the United States at(800)762-2974, outside the United States at(317)572-3993 or fax(317)572-4002Wiley also publishes its books in a variety of electronic formats. Some content that appears in print maynot be available in electronic formats. For more information about Wiley products, visit our web site atwww.wiley.comLibrary of Congress Cataloging-in-Publication Data:Dobrow. Robert p. authorIntroduction to stochastic processes with r/ Robert P. Dobrowpages cmIncludes bibliographical references and indexISBN978-1-118-74065-1( cloth)1. Stochastic processes. 2. R( Computer program language)I. TitleQC20.7.S8D6320165192′302855133-dc232015032706Set in 10/12pt, Times-Roman by SPi Global, Chennai, IndiaPrinted in the united states of america1098765432112016To my familyCONTENTSPrefaceAcknowledgmentsList of Symbols and Notationabout the companion Website1 Introduction and review1.1 Deterministic and stochastic models. 11. 2 What is a Stochastic Process? 61. 3 Monte Carlo Simulation. 91.4 Conditional Probability, 101. 5 Conditional Expectation, 18Exercises. 342 Markov Chains: First Steps402.1 Introduction. 402.2 Markov Chain Cornucopia, 422.3 Basic Computations, 522. 4 Long-Term behavior-the Numerical evidence, 592.5 Simulation. 652.6 Mathematical Induction*. 68Exercises. 70CONTENTS3 Markov Chains for the long term763.1 Limiting Distrib763.2 Stationary Distribution, 803.3 Can you find the way to state a? 943.4 Irreducible markov Chains. 1033.5 Periodicity, 1063.6 Ergodic Markov Chains, 1093.7 Time Reversibility, 1143.8 Absorbing Chains, 1199 Regeneration and the strong markov property 1333.10 Proofs of limit Theorems*, 135Exercises. 1444 Branching processes1584.1 Introduction. 1584.2 Mean Generation Size. 1604.3 Probability Generating Functions, 1644.4 Extinction is Forever. 168Exercises. 1755 Markov Chain Monte Carlo1815.1 Introduction. 1815.2 Metropolis-Hastings Algorithm, 1875.3 Gibbs Sampler, 1975.4 Perfect Sampling*, 20.55.5 Rate of Convergence: the Eigenvalue Connection*, 2105.6 Card Shuffing and Total Variation Distance. 212Exercises. 2196 Poisson process2236.1 Introduction. 2236.2 Arrival. Interarrival Times. 2276.3 Infinitesimal Probabilities. 2346.4 Thinning, Superposition, 2386.5 Uniform Distribution. 2436.6 Spatial Poisson Process, 2496.7 Nonhomogeneous Poisson Process. 2536.8 Parting Paradox, 255Exercises. 2587 Continuous- Time markov Chains2657.1 Introduction. 265
- 2020-12-10下载
- 积分:1
-
OPC UA 客户端 服务器 标准库源码
OverviewThis OPC UA reference implementation is targeting the .NET Standard Library. .Net Standard allows developing apps that run on all common platforms available today, including Linux, iOS, Android (via Xamarin) and Windows 7/8/8.1/10 (including embedded/IoT editions) without requiring platform
- 2021-05-06下载
- 积分:1
-
ComplexNetworksPackage matlab复杂网络分析
ComplexNetworksPackage matlab复杂网络分析很实用的工具包,找了好久才找到的
- 2020-12-03下载
- 积分:1
-
图像超分辨重建matlab代码
matlab图像超分辨处理与重建的代码,基于matlab开发,界面操作的
- 2020-12-04下载
- 积分:1
-
labview PID控制程序增量PID温度测量
labview PID控制程序 增量PID温度测量,很好用,有说明
- 2020-11-28下载
- 积分:1