登录
首页 » Others » 基于Adaboost算法的人脸识别 北京大学赵楠

基于Adaboost算法的人脸识别 北京大学赵楠

于 2020-11-28 发布
0 214
下载积分: 1 下载次数: 2

代码说明:

人脸检测和人脸识别都是属于典型的机器学习的方法,但是他们使用的方法却相差很大。对于人脸检测而言,目前最有效的方法仍然是基于Adaboost的方法。在网上可以找到很多关于Adaboost方法的资料,但基本上是千篇一律,没有任何新意。给初学者带了很多不便。建议初学者只需要认真阅读:北京大学 赵楠 的本科毕业论文 :基于 AdaBoost算法的人脸检测 这篇毕业论文就够了。作者详细分析了Adaboost算法在人脸检测中的具体执行过程,尤其是关于弱分类器的Haar特征选取过程,描述的相当清晰。北京大学太科生业论文最后一章,用编写的实现了 Adaboost算法的FDt程序,给出了相应的人脸检测实验结果,并和 Viola等人的结果做了比较关键词 Keywords∧ adaboost方法、人脸检测、 Boosting方法、PCA学习模型、弱学习工工TI北京大学太科生业论文谨以此论文献给A腺嘌呤、T胸腺嘧啶、G鸟嘌呤、C胞嘧啶、1和0-智能的基本构件和开拓智能研究的伟大先驱者们This dissertation is dedicated toA, T, G, C, 1 and o, the building blocks ofintelligence.andto the pioneers uncovering the foundations ofintelligence.北京大学太科生业论文正文目录 Contents摘要 ABSTRaCTI正文目录 CONTENTS图录LISTOFFIGURES…I表目录LISTOF TABLES····················a···········ba·。·········。··。······VIII人脸检··11概12难点与展望213人脸检测方法的性能评测1.31人脸图像数据库………41.3.2性能评测.2检测方法分类…2,1基于知识的方法●●●●●·●··●●●●●D·●b●鲁●·●●●。●。D●●·●●·●·。D。●。·。。●●●D·●看●。·●。·D●看●看。●。●8北京大学本科生毕业论文22特征不变量方法3模板匹配方法●香●鲁●鲁·●D·。●·。●·鲁●●鲁·●鲁鲁●●●鲁●·鲁··。●·●鲁音·●鲁。●···。·●●●鲁自●·鲁鲁。●●●b·●鲁自非b●●。●10基于表象的方法113经典方法概述···············.s.····················································121神经网络NEURALNETWORK232特征脸EIGENFACE1333基于样本学习方法 EXAMPLE-BASEDMETHODS34支持向量机 SUPPORTⅴ ECTOR MACHINE(SVM)........1535隐马尔科夫模型 HIDDEN MARKOV MODEL(HMM)4 ADABOOST方法概述164.1引2 PAC学模164.21概述14.22数学描述音音音。音音…………………………17V工北京大学太科生业论文43弱学习强学1844BOOSTING方法5矩形特征与积分图a···············4·················4··4········‘·4······4··4······2051引言··········.·········································.···········252矩形特征 RECTANGLE FEATURE2521概述.205.22特征模版.21检器内特征总数2252.31子窗口内的条件矩形5232条件矩形的数量…52.33子窗口的特征矩形数量.2352.34结果2453积分图 INTEGRAL IMAGE25531概念含………………25532利用积分图计算矩形特征值.27V工I北京大学太科生业论文5.32.1图像区域的积分图计算.5322矩形特征的特征值计算86 ADABOOST训练算法●●●D··●·●···●●。·●·。·●●鲁·●··。·●。·●鲁。●自·鲁。●。●●b·。·●。●鲁306.1训练基本算法·●。●。·●··●●·●。鲁鲁●●b·●鲁●··●·●。。●看●。鲁●·●●香···曲鲁鲁●鲁●306.1.1基本算法描述306.12基本算法流程图3262弱分类器 WEAK CLASSIFER33621特征值f(x)62阈值q、方向指示符p38623弱分类器的训练及选取…...83强分类STRONGCLASSIFIER40631构成40632错误率上限407程序实现及结果.………4371样本集●●·●·····●···········●··············●·······●··●·●·····●··········●··········●··●··●4372练难点及优化44721计算成本14V工工T北京大学本科生毕业论文7.2.2减少矩形特征的数量……省着音自··。·非。。音音。非D音音普申普普普非非非非着44723样本预处理4573检测结果467.31检测器……46732实验结果..477321实验对比477.322更多实验结果49733结论53致谢 ACKNOWLEDGMENTS54参考文献REFERENCES54Ver o76图目录 List of Figures人脸析流程2图2人脸的遮挡、不同表情、图像的质量、旋转等等都会影响人脸检测.3图3典型的正面人脸图像数据库中的人脸图像.图4左侧为测试图像,右侧为检测结果。不同的标准会导致不同的检测结果。北京大学本科生毕业论文图5基于知识的人脸检测方法抽象出人脸的基本特征规则图6—种人脸检测模板:这个模板由16个区域(图中灰色部分)和23种区域关系(用箭头表示)组成.10图7 ROWLEY的带有图像预处理的神经网络系统…13图8人脸高斯簇和非人脸高斯簇14图9矩形特征在人脸上的特征匹配。上行是24×24子窗口内选出的矩形特征,下行是子窗口检测到的与矩形特征的匹21图10计算mXm检测器内所有可能的矩形的数量。22图11积分图与积分的类比25图12坐标A(x,y)的积分图定义为其左上角矩形所有像素之和(图中阴影部分)。s(x,y)为A(x,y)及其y方向向上所有像素之和(图中粗黑竖线)26图13区域D的像素和可以用积分图计算为:i+i-(i2+i)图14矩形特征的特征值计算,只与此特征端点的积分图有关…...9

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 民航acars资料整理
    民航使用的acars系统采用非加密数据格式,可以利用短波和超短波接受解调acars报文,实时反馈航班信息
    2021-05-06下载
    积分:1
  • 清华大学信号与系统完整课件ppt
    清华大学信号与系统完整课件ppt清华大学信号与系统完整课件ppt
    2021-05-06下载
    积分:1
  • 相位解包裹
    matlab下的二维相位解包裹算法
    2020-12-05下载
    积分:1
  • springboot 集成 phoenix+hbase整合,完整demo
    springboot 集成 phoenix+hbase整合,完整demo。springboot集成phoenix+hbase 完整demo!!!!!!!springboot phoenix hbase
    2020-11-28下载
    积分:1
  • ARMA模型的详细介绍与举例
    详细介绍ARMA模型 里面不仅介绍了该模型的实际用法也进行了举例分析计算结果表明,时,预测的标准误差较小,所以选取=。预测第月份的销售收入为计算的程序如卜为移动平均的项数由于的取值不同,的长度不一致,下面使用了细胞数组简单移动平均法只這合做近期预测,而且是预测目标的发展趋势变化不人的情况如果目标的发展趋势存在其它的变化,米用简单移动屮均法就会产生较大的预测偏差和滞后。加权移动平均法在简单栘动平均公式中,每期数据在求平均时的作用是等同的。但是,每期数据所包含的信息量不样,近期数据包含着更多关于未来情况的信息。因此,把各期数据等同看待是不尽合理的,应考虑各期数据的重要性,对近期数据给予较大的权重,这就是加权移动平均法的基本思想。设时间序列为加权移动平均公式为十·十∴+式中为期加权移动平均数;为的权数,它体现了相应的在加权平均数中的重要性。利用加权移动平均数来做预测,其预测公式为即以第期加权移动平均数作为第+期的预测值。例我国年原煤广量如表所示,试用加权移动平均法预测年的产量。表我国原煤产量统计数据及加权移动平均预测值表原煤产量三年加权移动平均预测值相对差(%)解取,按预测公式计算三年加权移动平均预测值,其结果列于表中。年我国原煤产量的预测值为(亿吨这个预测值偏低,可以修正。其方法是:先计算各年预测值与实际值的相对误差,例如年为将相对误差列于表中,再计算总的平均相对误差。由于总预测值的平均值比实际值低,所以可将年的预测值修正为计算的程序如下:在加权移动平均法中,的选择,同样具有一定的经验性。一般的原则是:近期数据的权效人,远期数据的权数小。至于人到什么稈度和小到什么程度,则需要按照预测者对序饥的了解和分析来确定。趋势移动平均法简单移动平均法和加权移动平均法,在时间序列没有明显的趋势变动时,能够准确反映实际情况。但当时间序列出现直线増加或减少的变动趋势时,用简单移动平均法和加权移动平均法来预测就会岀现滞后偏差。因此,需要进行修正,修正的方法是作二次移动平均,利用移动平均滞后偏差的规律米建立直线趋势的预测模型。这就是趋势移动平均法。次移动的平均数为+∴在一次移动平均的基础上再进行一次移动平均就是二次移动平均,其计算公式为D下面讨论如何利用移动平均的潛后偏差建立直线趋势预测模型。设时间序列从某时期开始具有直线趋势,且认为末来时期也按此直线趋势变化,则可设此直线趋势预测模型为其中为当前时期数;为由至预测期的时期数;为截距;为斜率。两者又称为平滑系数现在,我们根据移动平均值来确定平滑系数。由模型()可知所以+…十因此由式(),类似式()的推导,可得所以类似式()的推导,可得于是,由式()和式()可得平滑系数的计算公式为例我国年的发电总量如表所示,试预测和年的发电总量。表我国发电量及一、二次移动平均值计算表年份发电总量次移动平均二次移动平均,=解由散点图可以看出,发电总量基本呈直线上升趋势,可用趋势移动半均法来预测。图原始数据散点图取三,分别计算次和二次移动平均值并列于衣中。再由公式(),得于是,得时直线趋势预测模型为预测年和年的发电总量为计算的程序如下:把原始数据保存在纯文本文件中为移动平均的项数趋势移动平均法对于冋时存在直线趋势与厝期波动的序列,是种既能反映趋势变化,又可以有效地分离出来周期变动的方法。§指数半滑法次移动平均实际上认为最近期数据对未来值影响相同,都力权一;而期以前的数据对未来值没有影响,加权为。但是,二次及更高次移动平均数的权数却不是—,且次数越高,权数的结构越复杂,但永远保持对称的权数,即两端项权数小,中间项权薮大,不符合一般系统的动态性。一般说来历史数据对未来值的影响是随时间间隔的增长而递减的。所以,更切合实际的方法应是对各期观测值依时间顺序进行加权平均作为预测值。指数平滑法可满足这一要求,而且具有简单的递推形式指数平滑法根据平滑次数的不同,又分为一次指数平滑法、二次指数平滑法和三次指数平滑法等,分别介绍如下次指数平滑法.预测模型设时间序列为,a为加权系数,
    2020-12-05下载
    积分:1
  • AWS 官方PPT图标资源
    AWS官方下载的PPT图标,EC2 S3等等,很全很强大,用于PPT制作和拓扑图
    2020-12-11下载
    积分:1
  • 曲率尺度空间算法检测角点matlab
    利用曲率尺度空间(CSS)算法检测角点,matlab实现,含GUI界面
    2021-05-06下载
    积分:1
  • 基于STM32的交通灯控制系统
    这是一个基于STM32的交通灯控制系统,里面有代码,有PPT,用实验报告
    2020-11-30下载
    积分:1
  • 有限元网格剖分详细算法步骤
    有限元网格剖分 有限元网格剖分 有限元网格剖分 有限元网格剖分
    2020-12-04下载
    积分:1
  • 安防网站模板
    模板介绍:宽屏风格的监控设备执照公司网站模板,顶部栏目采用宽屏设计,大气美观,适合做安防,监控器材、机械设备等产品类公司企业网站。宽度:100px 对齐:居中主色:黑色/深蓝色结构:div+css 运行环境:asp.net2.0(或以上)
    2020-11-29下载
    积分:1
  • 696518资源总数
  • 105873会员总数
  • 12今日下载