偏微分方程数值解法的MATLAB源码--古典显式格式求解抛物型偏微分方程等
1、古典显式格式求解抛物型偏微分方程(一维热传导方程)2、古典隐式格式求解抛物型偏微分方程(一维热传导方程)3、Crank-Nicolson隐式格式求解抛物型偏微分方程4、正方形区域Laplace方程Diriclet问题的求解如:function [U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C)%古典显式格式求解抛物型偏微分方程%[U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C)%%方程:u_t=C*u_xx 0
- 2020-06-27下载
- 积分:1
基于二维元胞自动机的交通流模拟分析
二维元胞自动机 基于二维元胞自动机的交通流模拟分析44http://xbbjb.swu.cn38St(i,j)=F[S(i,j),S,(i-1,j),S,(i+1,j),S,(i,j-1),S,(i,j+1)](1)BMI(1)BMIT=4t=341843.2/(N×N)NXN(AJAVAT=232×32,64×64,128128,256×256,512×512,T=4128×128MATLAB01100002000∷;酸(a)暂念的渐近状态(b)暂心的阻塞状态3128×128128×128C1994-2013CHinaAcademicJOurnalElectronicPublishingHouse.Allrightsreservedhttp://www.cnki.net643平均速度与密度关系图1.0平均速度曲线L32×320L=64x=128×1280808=256×2560.7512x512060.6053.330H040.30.20.2w0.10152253035404500.2040.6081.012141.61820密度/时间步10T=25128×1280.34.3BMLT0.80.60.4502eBMI02515密度/6128×128BMI(T-2T-4)BMIBMI[1 NAGEL K, SCHRECKENBERG M. A Cellular Automaton Model for Freeway Traffic [J]. Journal of Physique, 19922:221-2292 HAM O, MIDDLETON AA, LEVINE D. Self-Organization and a Dynamical Transition in Traffic Flow Models [J]Physical Review E, 1992(10):6124-6127L3 FUKUI M. ISHIBASHI Y. Traffic Flow in 1D Cellular Automaton Model Including Cars Moving with High Speed LJJ996,65(6):1868-1872005,54(10):4621-4626,2010,10(2):122-128C1994-2013cHinaAcademicJournalElectronicPublishingHouse.Allrightsreservedhttp://www.cnki.net46http://xbbjb.swu.cn38On Simulation and analysis on Traffic Flow Based onTwo-Dimensional Cellular automationMEI Hong, CHENG WeiZHANG Yun-sheng, YU Peng-cheng1. Faculty of Continuing Education, Kunming University of Science and Technology, Kunming 650051, China;2. Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 65005 1, ChinaFaculty of Information Engineering and Automation, Kunming University cf Science and Technology, Kunming 650051. China4. Computer Center, Kunming University of Science and Technology, Kunming 650051. ChinaAbstract: BML model is a two-dimensional cellular automata model, which is especially used to simulateand analy ze the traffic system. We use Java language to implement this model. With this model, the re-ationship between the average velocity and the average density has been found by computer simulationThe phase transition and self organization have also been faund. And at last, the bml model improved intraffic light cycle changes for exploring more valuable to the research and applicationKey words: two-dimensional cellular automation; traffic flow; BML modelC1994-2013CHinaAcademicJOurnalElectronicPublishingHouse.Allrightsreservedhttp://www.cnki.net
- 2020-12-11下载
- 积分:1