登录
首页 » Others » 旋转LED彩色取模

旋转LED彩色取模

于 2020-12-04 发布
0 223
下载积分: 1 下载次数: 2

代码说明:

一个可以处理彩色图像的源码,用matlab实现,提取图像每一点的RGB值,并最终将图像转换成一个彩色的圆形点阵,这可以应用在旋转LED的上位机控制中的图形取模上

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Asp+Ajax无刷新用户登录实例代码
    使用Asp+Ajax无刷新用户登录实例代码,值得学习的例子
    2020-12-01下载
    积分:1
  • matlab的图像缩放和旋转代码
    本代码是matlab的图像缩放和旋转代码,里面使用了最近领域实现和线性插值法实现算法实现图像缩放和旋转
    2020-12-11下载
    积分:1
  • 基于ssm+easyUI框架的CRM客户管理系统
    自己写的CRM管理系统 内附效果图和数据库字段 用的SSM框架 和 easyUI前端框架 仅供参考 能力有限 不足之处还请见谅
    2020-12-11下载
    积分:1
  • 基于遗传算法寻优的PID控制及MATLAB仿真
    基于遗传算法寻优的PID控制及MATLAB仿真28.5827.5270.826.50.625.510203040506070809010000.010.020.030.040.050.060.070.080.090.1Times[020]KW1=0.999,W2=0.001W=2.0W2=100。100Kp=16.1290K=0.2209PIDK。0.2209J=24.9812JPIDPIDMATLAB2003PIDPIDM1999020-28296999696020-282969620C1994-2012cHinaAcadcmicJournaleLcctronicPublishingHousc.Allrightsrescrvcd.http://www.cnki.nct
    2020-12-03下载
    积分:1
  • IEEE5节点潮流计算 matlab
    自己编的一个计算IEEE5节点潮流的小程序,用牛顿拉夫逊法,极坐标表示
    2020-12-08下载
    积分:1
  • 基于高光谱成像的蓝莓内部品质检测 特征波长选择方法研究
    在特征波长选取方面有一些创新,可以作为参考。在特征波长选取方面有一些创新,可以作为参考。(基于高光谱成像的蓝莓内部品质检测特征波长选择方法研究古文君1 ,田有文 1* ,张芳1 ,赖兴涛 1 ,何宽1 ,姚萍1 ,刘博林 2)586-482016620010~15mm0.8~2.3g。fone3:(InSpector V10E, Spectral InFinland)1392pix×1040pixCCDL CCD2(IGV-B141OM, IMPERX Incorporated, USA), 150W1. CCD Camera; 2.Spectrometer; 3.Shot; 4. Light source; 5. Samples(3900 Illuminatior, Illumination Tech6.Translationplatform7.Lightsourcecontroller;8.computernologies inc.,USA)、(IRCP0076-19. Translation platform controllerCOM,)、(120cm×50cmx(DELL VoStro 5560D-1528Figure 1 Schematic diagram of hyperspectral imagingcmsystem400~1000nm,4722.8nmRRGY-4(10mm)(DBR45(successive projections algorithm, SPA(stepwise multiple linear regression, SMLR)(SPA)(SMLR)SPASPASMLRSPA-SPA、SMLR_SMLR、SPA- SMLRSMLR-SPA21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct5871.6BP(error back propagation)BP17(correlation coeffiient of calibration, Re)(root mean square error of calibration set, RMSEC)correlation coeffiient of pre-diction, Rp)(root mean square error of prediction set, RMSEP)ENVI 4.8(Research System Inc, ), MATLAB 2014a(The Math Works Inc)、TheUnscrambler9.7、 Excel2010(Ⅵ icrosoftdgle banddWcvef.BP models for soluble solidsThe selected characteristic wavelengthCurve of relative reflectanceExtract the region of interescontent and firmness prediction2figure 2 Flow chart of data processing280mm,68ms,28mm·s-。99%202.2600nm600nm2b2c)21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct5884823(2f)BPSavitzky-Golasavitzky -golayTable 1 The effect of different spectra preprocessingCalibration setPredictioSpectrum typeRMSECRMSEPOriginal spcctrum0.933/0.9230.3510.4040.9200.9100.508/0.319MSCThe spectrum after MSC processing0.940/0.9450.56lO.3120.9190.9320.516/0.282SNThe spectrum after SNV processin0.93709340.60210.24309220.9010.6320.462Savitzky-golayThe spectrum after Savitzky-Golay processing 0.955/0.9550.3240.2410.951/0.9490.400/0.2782.5SPA-SPA SMLRSMLR SPA-SMLR SMLR-SPASPA-SPASPASavitzky-GolaySPATable 2 The results of multi-stage characteristic wavelength selection methodnmCharacteristie wavelength selection methodSPA-SPA452,455,470,482,490,785,893,912,921,942,950455,470,482,785,893.912SMLR-SMLR457,508,516,534,543,51,556,568,712,720.774,778508,534,543,712,720,774SPA-SMLR452,455,470,482,490,785,893,912,921,942,950452,470,482,490,893,912SMLR-SPA457,508,516,534,543,551,556,568,712,720,774,78534,7202.6Savilzky-gola(FS)392SPA-SPASMLR-SMLRSMLR-SMLRSMLR-SPABPBP0.001500021994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct589BPBPSPA-SPARp RMseP0.9520.391°Brix,RpRMSEP0.9530.234BrixTable 3 Detection results of soluble solid content and firmness of blueberry based on different multi-stagecharacteristic wavelength selection methodsCalibration setPrediction setCharacteristic selection method Wavelength numberRMSECRMSEP3929550.9550.324/0.2410.9510.9490.400/0.278SPA-SPA0.9590.9560.3180.1530.9520.9530.391/0.234SMLR-SMLR0.9560.9340.414/0.243912109020.559/0.349SPA SMLR0.828/0.8581.3670.58582208091.440/0.719SMLR- SPA20.958/0.9360.402/0.3359320.9280.435/0,4041387nm1229nm91.5%BPRRMSEP0.904215.163lBP3Rv0.84V0.94Rv0.83,SEV0.63。400-1000nmSavitzky-GolayBPSPA-SPASPA-SPA21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct59048[1 KADER F,ROVEL. B Fractionation and identification of the phenolic compounds of highbush blueberries(Vaccinium corymbosumLUJ].Food Chemistry, 1996,55(1): 35-40「J,2012,33(1):340-342,2017,38(2):301-305.[4 MENDOZA F, LU R, ARIANA D,et al. Integrated spectral and image analysis of hyperspectral scattering data for prediction ofple [ruil firmness and soluble solids conlenl[J] Poslharvesl Biology and Technology, 2011, 62(2: 149-160[5 SUN M J, ZHANG D, LIU L,et al. How to predict the sugariness and hardness of melons a near-infrared [J]. Food Chemistry,2017,218(3:413-42116 SIEDLISKA A, BARANOWSKI P, MAZUREK W, ct al. Classification models of bruise and cultivar detection on the basis of hy-perspectral imaging data[J]. Computers and Electronics in Agriculture, 2014, 106: 66-74[7 LIU D, SUN D W, ZENG X N, el al. Recenl aDvances in wavelength seleclion lechniques for hyperspectral image processing inthe food industry[J]. Food Bioprocess Technol, 2014, 7: 307-323[8 ZHANG C, GUO C T, LIU F,et al. Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector ma-chine[j] Journal of Food Engincering, 2016, 179: 11-18[9J,2016,47(5:634-6402009,29(:1611-1615201536(12)171-17612]J,2012,32(11:3093309[13] LI B C, HOU B L, ZHANG D W,et al. Pears characteristics (soluble solids content and firmness prediction, varieties) testingInethods based on visible-near infrared hyperspecTral imaging[J]. OpLik, 2016, 127: 2624-2630[14] FAN S X, ZHANG B H,LI J B, et al. Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data[J. Postharvest Biology and Technology, 2016, 121: 51-61[15 RAJKUMAR P, WANG N,EIMASRY G, et al.Studies on banana fruit quality and maturity stages using hyperspectral imaging[ JIJournal of Food Engineering 2012, 108: 194-200,2015,36(16):10172015,35(8:2297-2302[18]WANG N,2007,23(2:151-155.「192008,39(5):91-9320」201536(10:70-74.[21] WU D, SUN D WAdvanced applications of hyperspectral imaging technology for food quality and safety analysis and assess-ment a review part T[J]. Innovative Food Science and Emerging Technologies, 2013, 19(4): 1-14J2014,35(8:57-61BP,2012.124」13,44(2):142-146.25],201523(6:1530-1537M011:41-48.[27,2013,24(10:1972-19762010,30(10):2729-2733?1994-2018ChinaAcadcmicJournaleLcctronicPublishingHousc.Allrightsreservedhttp://www.cnki.nct
    2020-12-07下载
    积分:1
  • 频谱仪——安捷伦N9010A操作手册
    频谱仪的介绍、操作及性能指标,硬件工程师必须学会的测量器件之一。Definitions and conditionsSpecifications describe the performance of parameters covered by the productwarranty and apply to the full temperature of 0 to 55C, unless otherwisenotedGet more Information95th percentile values indicate the breadth of the population (approx. 2 o) of perfor-This EXA signalanalyzer datamance tolerances expected to be met in 95 percent of the cases with a 95 percentsheet is a summary of theconfidence, for any ambient temperature in the range of 20 to 30C. In addition tothe statistical observations of a sample of instruments, these values include thespecifications and conditionseffects of the uncertainties of external calibration references these values are notfor N9010A EXA and N9010AEPwarranted. These values are updated occasionally if a significant change in theExpress EXA signal analyzers.statistically observed behavior of production instruments is observedwhich are available in the EXASignalAnalyzer SpecificationTypical describes additional product performance information that is not covered byGuide(N9010-90025)the product warranty It is performance beyond specifications that 80 percent of theunits exhibit with a 95 percent confidence level over the temperature range 20 toFor ordering informationkrefer30C. Typical performance does not include measurement uncertaintyto the EXA Signal AnalyzerConfiguration GuideNominal values indicate expected performance, or describe product performance59896531Nthat is useful in the application of the product, but are not covered by the productwarrantyThe analyzer will meet its specifications whenIt is within its calibration cycleUnder auto couple control, except when Auto Sweep Time rules= AccySignal frequencies 10 MHZ, with DC coupling appliedThe analyzer has been stored at an ambient temperature within the allowedoperating range for at least two hours before being turned on; if it had previouslybeen stored at a temperature range inside the allowed storage range, but outsidethe allowed operating rangeThe analyzer has been turned on at least 30 minutes with auto align set tonormal, or, if Auto align is set to off or partial, alignments must have been runrecently enough to prevent an Alert message; if the Alert condition is changedfrom Time and Temperature to one of the disabled duration choices, the analyzermay fail to meet specifications without informing the userFor the complete specifications guide, visitwww.agilent.com/find/exaspecifications1. For earlier instruments/Serial number prefix MY/SG/US5052), the full temperature rangesfrom5t50°CFrequency and Time specificationsFrequency rangeDC coupledAC coupledOption 50310 Hz to 3.6 Gh10 MHz to 3. 6 GHzOption 50710 Hz to 7 GH10 MHz to 7 GHzOption 51310 Hz to 13.6 GHz10 MHz to 13.6 ghzOption 52610 Hz to 26.5 GH10 MHz to 26.5 GhzOption 53210 Hz to 32 gHzNAOption 54410 Hz to 44 gHzNABandLO multiple(N)10 Hz to 3. 6 GHz3.5to7.0GH3.5to8.4GH28.4 to 13.6 GHz3135to17.1GH17 to 26.5 GHz5426.4 to 34.5 ghz344t044GHzFrequency referenceAccuracy+l time since last adjustment x aging rate)+ temperature stability t calibrationaccuracyAging rateOption pFrStandardy±1×106/year±15X107/2 yearsTemperature stabilityOption PFrStandard20to30°c±15×108±2×106Full temperature range±5x1±2×10Achievable initial calibration accuracyOption PFrStandard±4x108±1410Example trequency reterence accuracy=±(1×107+5×103+4×10-)(with Option PFR1 year after last adjustment±19x10Residual fmOption pFr
    2021-05-06下载
    积分:1
  • RLS算法及遗忘因子对RLS的影响
    RLS算法及遗忘因子对RLS的影响,修改RLS的参数来查看遗忘因子对其的性能的影响
    2020-12-11下载
    积分:1
  • 单帧图片转为视频的
    【实例简介】一个matlab的关于多副单帧图片转成视频的小程序,希望对大家有用!
    2021-11-14 00:32:04下载
    积分:1
  • Visio科学图形包
    数学  代数:常用函数,指数、对数和幂函数,抛物线和双曲线  函数图表:图表,集合  几何:立体几何,平面几何,解析几何,圆和椭圆  三角学:角,三角函数
    2020-12-09下载
    积分:1
  • 696516资源总数
  • 106409会员总数
  • 8今日下载