登录
首页 » Others » 研究LDPC码的性能

研究LDPC码的性能

于 2020-11-30 发布
0 232
下载积分: 1 下载次数: 1

代码说明:

LDPC code 已经用于DVB-S2标准。这个MATLAB程序用来研究LDPC码的性能

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 深度学习相关资料
    包括一份加了注释的深度学习工具箱,一份配套论文以及一份配套的PPT
    2020-12-02下载
    积分:1
  • AWR报告详解
    AWR报告详解,描述了AWR报告的各个指标,方便对Oracle数据调优
    2020-12-09下载
    积分:1
  • 电子设计大赛_直流数控稳压电源
    电子设计大赛_直流数控稳压电源,有较好的参考价值
    2021-05-07下载
    积分:1
  • MFC之通讯录
    用MFC写的简单通讯录程序,实现了基本的增、删、改、查功能。
    2021-05-07下载
    积分:1
  • visio的PAD流图形状
    在visio里文件下形状选项里可以选择“我的形状”将PAD流程图的形状加载进来。这个VSS文件里包含了语句、循环、2分支、3分支等几个基本的PAD图形,简单的流程图绘制是没问题的。大家也可以丰富这个形状库,添加更多的形状。
    2020-12-04下载
    积分:1
  • 基于自写的随机森林算法的adult数据集分类
    压缩包主要采用随机森林算法处理adult数据集的分类问题,主要包含四部分,第一部分是由python编写的adult数据集预处理过程,第二部分是自己编写的随机森林算法处理adult数据集,第三部分是调用python中sklearn模块处理adult分类问题,第四部分是基于matlab调用5种机器学习分类算法分别处理adult分类问题比较哪种算法能够取得更好的分类效果。
    2020-12-09下载
    积分:1
  • CadLib4.0 Cad类库.rar
    网上下了几个都不是真正的破解,只好自己动手!压缩包内包含解密文件及一个c#winfrom读取dwg、dxf的示例,vs2010下测试通过,支持最新的cad2014格式,更多示例可从官方下载。
    2020-01-14下载
    积分:1
  • 华北电力大学 电力系统分析基础
    第一节电力系统的基本概念第二节电力系统运行应满足的基本要求第三节电力系统的结线方式和电压等级第四节电力系统工程学科和电力系统分析课 由于目录较长 就不再描述了 具体下载了看 绝对不是打广告或是骗人">第一节电力系统的基本概念第二节电力系统运行应满足的基本要求第三节电力系统的结线方式和电压等级第四节电力系统工程学科和电力系统分析课 由于目录较长 就不再描述了 [更多]
    2020-12-10下载
    积分:1
  • 《Zemax激光光学设计实例应用——自学案例汇》之<Zemax光纤输出光斑整形光源的选择(非序列模式)>
    简介:这份材料是作者自学Zemax光学设计及在实践中应用的案例汇编,提供初学者使用软件作光学系统设计练习,整个过程需要Zemax光学系统设计软件。使用的软件版本为比较常见的2005或2009。因两个版本在某些菜单列表和窗口形式上的些许差异,读者需自行对比测试。最开始的一些例子是基于目前比较常见的教材和习作而进行的细化论述,以丰富本文内容同时对初学者入门更有帮助。作者才疏学浅,不保证该文本的科学性和有效性,其主要作用在于帮助自己对知识进行积累、回顾和追溯。文中会对各个实例的关键位置进行尽量详细的叙述,以达到尽可能全面地掌握知识的目的。本文基于理论与实践的结合,不仅描述如何设计一套光学系统,并且讨Zemax激光光学设计实例应用—自学案例汇编FN∏A TWUZ图18-43D光路结构图(混合序列模式)为了减少麻烦,用不着重新在非序列模式中编辑所有组件;我们可以将上述例子直接转换到非序列模式下。步骤为,主菜单 Tools→ MIsce1 aneous→ Convert to NsC Group,在弹出的对话框中,选择要转换的序列范围,比如,这里是从 Surface2到 Surface13,同时注意勾选 Convert file to non- sequenti al mode,确定后即可转换为非序列模式,透镜元件都在。不过,你会发现,原来已有的非序列组件不能转换过来,自动消失了。不过没关系,重新编辑缺失的组件即可。如图18-5所示,添加一个圆柱体(光纤)组件,再添加若干个探测器(方便自己观察的位置即可)BI Non-Sequential Component EditorEdit Solves Errors Detectors Database Tools ViEW Helpobject Typecomment2P351t1hMaterial Front FZ LengthBack rinder volume.050standard I erF1510.70N-5F64R.00冂.000.250standard LerF1511.820N一LAKs.50n6250Toroid a Lers surfaces00Q2.530standard Lerssurfaces45,440D.00Qtandard Lers surfaces4,3200。000standard Lers surfaces47.3z0BA/.0005,350Detector民ect116.000Detector Fect5.200200图18-5非序列光学组件列表接下米,我们米重点说一说光源的选择问题。因为光源的选择会明显影响仿真的实际效果。这里,我们需要个发散型的光源,发散角基本要和光纤的数值孔径相同,光源放在光纤前端——入射端。非序列光源组件有多种类型叫选,包括椭圆形光源 Source e1 lipse半导体光源 Source diode等等。这些可改置发散角的光源是否都满足要求呢,我们要看《 Matlab辅助激光光学分析与应用》作者出品Zemax激光光学设计实例应用—自学案例汇编看这些光源通过光纤组件之后输出一段距离光线的分布情况和聚焦的情况。我们首先选择椭圆形光源 Source e11ipse作为输入光源,放在光纤输入端。表面上看,椭圆形光源 Source e11ipse是一个面光源,可以分别设置两个半轴长度,但实际也是无穷远点光源。要设置光源的发散角,则需要改变发光源的位置,从无穷远改为有限距离。obiectcomment z Position Material*LayoutSourcepie50.020500000Power (wat.. wavenumber color# x Half wi.. Y Half wi.source Di..1.0000.0200.0200.100图18-6椭圆光源参数设置如图18-6所示设置光源参数,类型 object Type选择 Source e11ipse,位置zPoSItion设为-50.02,绘图光线数目 Layout rays设为50,分析光线数目 AnalysisRayS改为500000,半轴长度(相当于光阑) X Half width、 Y Half width均设为0.02(小于光纤半径),光源距离 Source distance设为0.1,其他参数默认即可。如此设置,光源距离和光阑尺寸的配合,恰好获得数值孔径NA为0.2的光源。然后在光纤输岀端、距离光纤端面0.5mm的位置放置一个探测器,检测输出光线分布情况,探测器像素500,尺寸要比预测光斑尺寸略大一些(一般2倍即可)设置完华,打开3D光路结构图,如图18-7所示。可见与图18-4所示的混合序列模式没有明显区别,除了绘图光线均匀性的区别,非序列模式中绘图光线为随机分布方式,而序列模式中绘图光线为均匀分布方式将图像局部放大,观察光纤输入端和输出端,注意光线是否有溢出或者发散角与设想的是否一致等等,分别如图18-8和18-9所示。因为,笔者实测发现一个问题,减小光纤直径,到一定程度之后,就会影响输出端的光线数值孔径,似乎一部分发散角大的光线被消去,输出的光线数值孔径变小了。但是,这时如果将光纤长度缩短到一定程度后,输出光线的数值孔径又能恢复正常。这个问题具体是由什么原理、原因造成的,口前还不知道。也就是说,用这个圆柱体cy1 inder yo lume来模拟光纤,需要注意育径-长度比例,否则丢失信息,读者注意。《 Matlab辅助激光光学分析与应用》作者出品Zemax激光光学设计实例应用—自学案例汇编图18-73D光路结构图(非序列模式图18-83D光路结构图-光纤前端(非序列模式)《 Matlab辅助激光光学分析与应用》作者出品Zemax激光光学设计实例应用—自学案例汇编图18-93D光路结构图-光纤出端(非序列模式)接着,打开探测器观察窗口,再打开光线追迹控制器,追迹所有探测器光线。这里,我们放置了两个探测器,分别在光线输出端口和光线聚焦位置。先看光纤输出端的光线分布,如图18-10所示为相干模式下,光纤输出端附近的光斑形状及光线密度分布情况,从图上看,分布不是很均匀,但大体还是可以看出光斑整体轮廓效果:;再切换到非相干模式下,如图18-11所示,我们看到这时光线分布严重不均匀,甚至光斑轮廓都看不到了,这显然已经和实际经验相去甚远了。133,S1l5宁,四了了4:1F315宁,H4,529,总92H,3屮DETEC T0R工MRGE: COHEEENT工RRFD工FNCED: YHG旺 AM BELTVERT SIST日正,屮日國翼的,题 H NILLLHETERXELS 500WX 591 H. TOTAL HITS =499993FHc:1,用92《 Matlab辅助激光光学分析与应用》作者出品Zemax激光光学设计实例应用—自学案例汇编图18-10探测器光线分析-光线输出端(相干模式)291625222三51292H1DETECTOR工HGE: INCOHERENT RR工HNE正囚,"HM工ET防.PIEs5EW5〗H.卫THT=曾們EF工RRR工RNCE40TE+004 HATTSCH 2TOTHL POWERi 9 9998E-00L HTT5图18-11探测器光线分析-光线输出端(非相干模式)121,5L,2272,55四DETE匚TDR工NRGE: COHERENT工 =EDLNCEND: HG BERM ELTWERY STSTEMTUE MAY正 ETECTOR 9. NSCG SLRFRCE正EW2@H山工TE,FE§5W5H,TfHT=2PEF TRRAOTFNCE i 12785E+00L ATTSCH"?OTAL POWER2.5占5E-2 MATTS图18-12探测器光线分析-聚焦光斑(相干模式)《 Matlab辅助激光光学分析与应用》作者出品Zemax激光光学设计实例应用—自学案例汇编r94:15屮714,72535,32555,123827E58 8317ETEGTUE工MRGE: INCOHEENT RRH工RNCELD: YAG BERM DELIVERY SYSTE1RCE 1SLZE 4I LX 21DE5 H MILLLHE TER PLNELS 59 5X 505 H. OTAL HTs =197978CE::60:m2TOTHL FILER图18-13探测器光线分析-聚焦光斑(非相干模式)再看另外一个探测器,光线经过透镜光学系统整形聚焦后的光斑形状和光线分布情况,相干模式和非相干模式分别如图18-12和18-13所示。同样,相干模式虽然分布也不均匀但基本还能看出光斑轮廓为以椭圆光斑;而非相干模式下,光线分别很不均匀,看上去光斑形状也不是椭圆形,而是一个变形了的菱形。于是,笔者怀疑光源的选择和设置可能不人合理。可能是由于光源本质还是一个点光源,即使通过光纤(圆柱体)后光线也没能有效匀化所致。那么,换一个光源类型,比如半导体光源 Source diode会不会更好一些。如图18-14所示,光源类型选择 Source diode,位置 z Postion设为-50.02,绘图光线数目Layout rays设为50,分析光线数目 Analysis Rays设为500000,发散角X- Di vergence、Y- DI vergence均设为12(匹配光纤数值孔径),其他参数默认即可。如此设置,获得的数值孔径NA差不多也为0.2的光源ε然后同样在光纤输出端、距离光纤端面0.5mm的位置放置一个探测器,检测输岀光线分布情况,探测器像素500,尺寸要比预测光斑尺寸略大一些(一般2倍即可)。更新3D光路结构图,放大观察光纤入射端和输出端的光线情况,分别如图18-15和18-16所示,可见都还比较正常,没有溢出光线,输出发散角也比较合理。《 Matlab辅助激光光学分析与应用》作者出品Zemax激光光学设计实例应用—自学案例汇编object TypeComment Position Material+ I ayout.*Analysi.Source diode0,U∠0object Type Astigmatismx-Diver ge.X-superGa.Y-Diverge.Y-superGasource D1 odel0.0D012.000.0112.0000.01图18-14导体光源参数设置图18-153D光路结构图-光纤前端图18-163D光路结构图-光纤输出端《 Matlab辅助激光光学分析与应用》作者出品Zemax激光光学设计实例应用—自学案例汇编311,忌HL428,总5732屮9,"F31之18,28187,1H6」5s.92712,3白占2,3日318H1JE TEG TOR工MRGE:Cu仨RENT工 CERO LHNGELD: YAG BERM DELIVERY SYSTE1灯T职R1, NSCE RFACE L江正区W翼四,HM工能防,PXL5E的日H.ILHT=8工RRRL工FNCE:3,1L8HE+2H^2TOTHL PERB,5551E-图18-17探测器光线分析-光线输出端(相干模式)H⑦13屮131忌3L7s叫sDETECTOR工MRGE:工 COHEZET工RRR囗工FCEHG BERM DELIVERY SYSTE正 TECTOR10. NSCG EURFACE LX,啦H工能TE,PX555H而HT=第83工 H:z:22SrCH+图18-18探测器光线分析-光线输出端(非相干模式)《 Matlab辅助激光光学分析与应用》作者出品
    2020-12-06下载
    积分:1
  • 利用Hilbert变换提取信号瞬时特征的算法实现
    研究了在工程中如何通过算法来实现利用 Hilbert 变换提取信号的瞬时特征。深入地分析了如何利用数值微分法提高提取瞬时频率特征的精度。最后,给出了一种可行的算法,并通过实验验证了这种方法可以在工程中有效地提取信号的瞬时频率特征。84微机发展第13卷①H(x)=y;H(x)=y;(i=0,1,…n)(j=0,1(11)②在每个小区间/x1,x1+17i=0,1,…,n-1)上由相关定理知:当划分的小区间的长度趋于零时H(x)是三次多项式。s(x)及其一至三阶导数分别一致收敛到f(x)及其一至可以写出分段三次 Hermite插值函数的分段表达式:三阶导数。所以用三次样条插值函数去近似表达用离散值(x)=(1+2x-x过+)2v;+表示的原函数,具有较高的可靠性。3)两种插值的比较挨尔米特 Hermite插值较三次样I-i,1+2条插值具有较好的稳定性与收敛性,但它只能休让各段曲线在连接点上的连续性,而不能保证整条曲线在这些点上y+1Ditl的光滑性。而有时不仅要求曲线连续,而且要求曲线的曲X/(i=0,18)率也连续即要求分段插值函数具有连续的一阶导数,埃H(x)的导数为尔米特 Hermite插值此时就不能满足上述要求6次样条插值较埃尔米特 Hermite插值具有较好的H(x光滑程度,用三次样条插值函数求数值导数比用埃尔米特+2(x-x2(xHermite插值可靠性大,但计算比较复杂,二者的区别见图h2yV+17, h(i-0,12)三次样条插值。已知函数y=f(x)在区间/a,b上的n+1个节点上的值y=f(x;)(i=0,1,…m),求插值函数s(x),使(i=0,1图4 Hermite插值与三次样条插值的比较图2在每个小区间x,x+1(=0.1.…n-1)上利用埃尔米特 Hermite插值得到的2FSK信号的瞬时s(x是三次多项式,记为s(x频率见图5,利用二次样条插值得到的该信号的瞬时频率③3(x)在la,b/上二阶连续可徵。见图6。数s(x)称为f(x)的三次样条插值函数可以利用节点处的二阶导数值为参数,也可以利用节点处的导数值为参数求三次样条插值涵数的表达式。若利用节点处的一阶导数值为参数,求得的三次样条插值函数的表达式为(x)=M-1x-x-)36 h6 hMihi5 DEMeN5a亩pai66hx∈[x;,x+17,b-x+1-x,S"(x)=M图5由 Hermite插值提取图6由三次样条插值提取(j=0,1的2FSK信号的瞬时频率的2FSK信号的瞬时频率对s(x)进行求导,利用S(x)在节点处一阶导数连从图5、图6可以看出利用三次样条插值得到的瞬时续的性质结合边界条件求解出参数M,把求得的参数代频率可以准确反映出信号具有的的摒时频率特征而利用入公式(10),即得三次样条插值函数的s(x)分段表示式。埃尔米特 Hermite插值得到的瞬时频率与信号具有的瞬s;(x)的导数为时频率特征不符。这是因为利用数值微分法求瞬时频率插值以后喫进行求导。三次样条插值函数具有连续的二阶M2 hiM; 2 hj导数,因而具有较好的光滑程度,符合求导条件,所以可以J+1-h(M2+1-M/)准确求出信号的瞬时频率;而埃尔米特 Hernite插值.不够光滑,虽能保证插值多项式收敛于原函数,但不能保证插x Elx,x;+1 h,=xi+I-x, S(xj )=M;值多顷式的导数收敛于原函数的导数,所以求得的值与信o1994-2010ChinaAcademicJournalElectronicPublishingHouse.Allrightsreservedhttp://www.cnki.net第6期刘慧婷等:利用 Hilbert变提取信号瞵时特征的算法实现号实际的瞬时频率值不符。实验结果和理论分析结果是(1) Hilbert变换只能近似应用于窄带信号,即形如纹的(t)=a(1)cosu+6(1)),其中>>B(B为信号带2.3.3结论宽)的信号。但实际应用中,存在许多非窄带信号, Hilbcrt利用数值微分法求瞬时频率ω(t)的步骤可以归纳变换对这些信号无能为力为:首先通过三次样条插值得到分段多项式p(1),(2)对于任意给定时刻,通过 Hilbert变换运算后的结pp(抄);然后分别对分段多项式p(t),Pp()关于变量t果只能存在一个频率值,即只能处理任何时刻为单一频率进行求导,得到pd(,ppd(t);最后求出每一时刻t所对的信号。这显然不合理,因为在实东中同一信号会含有多应的导数值,即求得t(t,u(t)。再把求得的值代入公种频率成分式(6)就完成了提取瞬时频率ω(1)的过程。求解结果见(3)对信号进行 Hilbert变换时,信号的两端会出现严图7重的端点效应。提取某些信号瞬时特征所得的瞬时频率在局部出现了负数,端点效应是造成负频率的一个原因而端点效应可以通过利用特征波对原有数据序列进行延拓的方法来解决,具体解决办法将在今后讨论。尽管目前出现了EMD担论4,其目的是将不满足Hibt变换的信号进行分解得到若干个IMF( intrinsic mode function),然后进行 Hilbert运算,达到提取信号瞬时特征的目的。该理论开辟了信号处理的新空间。但它还不够成熟还需喫进一步的完善和研究图7利用数值微分法提取信号的瞬时频率特征参考文献从图7可以看出,以三次烊条指值进行的数值微分可[]黄长蓉. Hilbert变换及其应用[J].成都气象学院学报以准确岀提取岀信号的瞬时频率特征。199,14(3):273-276.[2]杨小牛,楼A义,徐建良.软件无线电原理与应用[M].北3结束语京:电子工业出版社,2001在工程中, Hilbert变换使得我们对短信号和复杂信号[3]丁丽妤.数值计算方法[M].北京:北京理工大学出版社,的摒时特征的提取成为可能特别是对瞬时频率特征提1997取,在工程中具有十公重要的意义。文中讨论的利用三次[4] Huang N e. The empirical mode decomposition and the hilbert样条插值进行数值徵分以提取瞬时特征的方法是可行的,spectrum for nonlinear and nor stationary time series anal ysis但还存在着如下问题。[].Proc.R.soc.Lond.A,1998,454:903-995(上接第81页)218994。例22(x)=(1-2siny=223101075一般的(A算法计算了120代,求到的最大值为454176.219。154370083改进的α算法计算了34代,求到的最大值为1048575.875。改进后的αA算法收敛速度(指迭代次数)比一般GA算法几乎快了一个数量级,精度也提高了不少,特别是例2的最大值提高一倍多,速度提高这么快是未曾料到的y=74958参考文献+4X Axl Thla[1]陈国良.遗传算法及其应用[M]·北京:人民邮电出版社,图2函数2的图像1996一般GA算法计算了20代,求到的最大值为[2]袁亚湘,孙文瑜.最优化理沦与方法[M]北京:科学出版社,19991.218983[3]张铃,张钹·遗传算法杋理的硏究[J]·软件学报,改进(A算法计算了5代,求到的最大值为2000,11(7):945952o1994-2010ChinaacAdemicJournalElectronicPublishingHouse.Allrightsreservedhttp://www.cnki.net
    2020-12-05下载
    积分:1
  • 696518资源总数
  • 106208会员总数
  • 21今日下载