登录
首页 » Others » 一个非常经典的KPCA程序

一个非常经典的KPCA程序

于 2020-12-03 发布
0 266
下载积分: 1 下载次数: 2

代码说明:

注释详细,易于使用,程序经典!可供非线性线性变换、特征降维使用

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Xilinx FPGA教大全
    FPGA工程设计高级研修班_Xilinx.pdf (30 MB) FPGA设计高级技巧_Xilinx.pdf (2.94 MB) Xilinx ROM使用中文教程.pdf (226.08 KB) Xilinx_FPGA_Digital_System_Design_Primer.pdf (7.02 MB) Xilinx_FPGA_开发环境的配置.pdf (420.63 KB) Xilinx_FPGA开发全攻略_基础篇.pdf (6.72 MB) Xilinx_FPGA开发全攻略_技巧篇.pdf (4.4 MB) Xilinx_HDL_Coding_St
    2020-12-06下载
    积分:1
  • PacketTracer实验成品全集
    最全面的ccna实验集合,里面有详细的讲解和拓扑实验,助考ccna不是梦!
    2020-12-12下载
    积分:1
  • 基于STM32的SPI双机通讯(含主从机)
    基于stm32的双机通讯(含主从机程序)
    2020-12-06下载
    积分:1
  • 区域生长算法
    区域生长算法的简单实现,人工选取种子,对二值图像的前景进行分割。
    2020-11-28下载
    积分:1
  • 改进的蜂群算法图像分割MATLAB代码
    自己做的项目的改进代码,希望对大家有帮助!
    2020-11-27下载
    积分:1
  • 四机双区域系统的电力系统稳定器分析
    本文是对电力系统稳定器PSS的SIMULINK仿真报告,对PSS的工作过程进行分析,系作者本人撰写,大家可以借鉴学习,但版权归作者。
    2020-12-10下载
    积分:1
  • 基于PID及单片机控制的智能恒温箱设计
    本温度控制系统为以单片机为核心,实现了对温度实时监测和控制,实现了控制的智能化。本系统采用了PID控制技术,可以使温度保持在要求的一个恒定范围内。制冷方面介绍了半导体热电制冷,半导体制冷独具有诸多特点,应用开发几乎涉及所有制冷领域,尤其在制冷量不大,又要求装置小型化的场合,都具有优越性。它在国防、科研、工农业、气象、医疗卫生等领域得到了广泛应用,可用于仪器仪表、电子元件、药品、疫苗等的冷却、加热和恒温,一些应用型制冷器如石油凝固点测定器,无线电元件恒温器,微机制冷器,红外探测器制冷器,显影液恒温槽,便携式冰箱,旅游汽车冷热两用箱,半导体空调器等。半导体制冷器未来将向大功率与微小型发展,目前,半
    2020-11-27下载
    积分:1
  • 110kv变电所毕业设计
    为满足经济发展的需要,根据有关单位的决定修建1座110KV盐北变电所。本工程初步设计内容包含变电所电气设计,新建的盐北变电所从110KV侧东郊变电所受电,其负荷分为35KV和10KV两个电压等级。通过技术和经济比较,现采用下列方案:1. 内设两台三绕组变压器,电压等级为121/37.8/11。2. 110KV进线采用内桥接线形式。3. 本工程初步设计内容包括变电所电气设计。4. 35KV和10KV配电装置同样采用单母线分段接线。5. 所用电分别从10KV两端母线获得。为满足经济发展的需要,根据有关单位的决定修建1座110KV盐北变电所。本工程初步设计内容包含变电所电气设
    2020-11-02下载
    积分:1
  • NTC热敏电阻温度采集方案
    NTC温度采集方案,有详细的算法,包括一些程序,硬件设计等SUNPLUS用热敏电阻做朵用温度月录页系统概要系统说明热敏电阻器1.2.1电阻一温度关系1.3数值处理线性插值软件说明软件说明2档案构成2.3程序说明程序范例DEMO程序使件原理佟使用资源硬件使用资源说明参考文献SUNPLUS用热敏电阻做朵用温度修订记录版本日期编写及修订者编写及惨订说明初版错误校SUNPLUS用热敏电阻做朵用温度系统概要系统说明木应用例实现ⅳrC热敏电阻器对温度的测量。热敏电阻器把温度的变化转换为电阻阻值的变化,再应用相应的测量电路把阻佶的变化转换为电压的变化;SPMC75F2413A内建8路ADC可以把模拟的电压值转换为数字信号,对数值信号进行处理可以得到相应的温度值。热敏电阻器热敏电陧有电阻值随温度升高而升高的正温度系数(3 ositive Tcmpcraturc Coefficient简称PC)热敏电阻和电阻值随温度升高而降低的负温度系数( Negative TemperatureCoefficient简称NTC)热敏电阻。NT~热敏电阻器,是·种以过渡金属氧化物为主要原材料,采用电了陶瓷⊥艺制成的热敏半导体陶瓷组件ε这种组件的电阻值随温度升髙而降低,利用这一特性可制成测温、温度补偿和控温组件,又可以制成功率型组件,抑制电路的浪涌电流。电阻温度特性可以近似地用下式来表示:式中:Rη、R分别表示NTC在温度T(K)和额定额定温度T(K)卜的电阻值,单位2,T、T为温度,单位K(Ts(k)-273.15+T(℃))。B,称作B值,NTc热敏电阻特定的材料常数(Beta)。由于B值同样是随温度而变化的,因此NT热敏电阻的实际特性,只能粗略地用指数关系来描述,所以这种方法只能以一定的精度来描述额定温度或电阻值附近的有限的范围。但是在实际应用中,要求有比较精桷的R-T曲线。要用比较复杂的方法(例如用thesteinhart-Hart方程),或者用表格的形式来给定电阻/温度关系应用例选用NC热敏电阻器CwF2-502F3950,基于精确的R-T曲线,来对温度进行精确的测量。电阻一温度关系如表1-1所示,NC热敏电阻器CwE2-502F3950各温度点的电阻值,即电阻一温度关系表。从提供的电阻一温度关系表中可以看出NTC热敏电阳器CWE2-502E3950的测温范围为[-55℃,125℃],其电阻值的变化范围为[25006292,242.6492]。表1-1电阻一温度关系衣温度℃电阻值Ω温度℃电阻值Q温度℃电阻值Q55250062542374045322523952213575120241219175C4918158018171895-471626844615393345l∠56384∠1377534313029342123231-4111655CSUNPLUS用热敏电阻做朵用温度4010232391042613898621.793295.53688267.43583521.83479043.93374819.23270833.93167074.730635292960184.6-2857030.22754054.72651247.9-25486002446101.6234374422415192139418.82037435.9-1935563.51833795-1732124.463C545.829053.827643.3-1326309.525047.91123854.2-1022724,621655.320642.719683.618774.917913.6417097.116332.915588.4111891.5014230113601.913005.412438.7l1900.111388.210901.310438.39997.74578.41109181113799128436.83133091.73147762.787449.16167150.C4176864.7592.4196332.49206C34.32215847.31225620.89235404,53245197.72255000264810.9274630.014456.93294291.283C4132.69313980.83323835.383696.03343562.193434.53194.1383C81.22392972.92402869412769.24422673.47432581.5442493.17452408.3462326.76472248.38482173.04492100.6502032511963.92521899.441837.4541777,6已1720.2561664.85571611.541560.2591510.746C1463.08611417,14621372.87631330.18641289.C21249.321211.03671174.C91138.44691104.04701070.83711C38.78721007.8273977.9374949,0675921.1776894.22868.1878843.027980795.1781772.4382750.4483729.1784708.685688.786669.4487650.88632.76SUNPLUS用热敏电阻做朵用温度89615.39C91582.0292566.179550.8194535.9495521.5396507.5797∠94.0598480.9499468.23100453.301443.9710243210321.15104410.26105399.69106389.4407379.5103369.85109360.48101,411112.57112334.01325.69114317.62115309.7716302.16117294.76118287.5719280.59120273.8121267.21122260.8123254.512L248.52125242.64数值处理通过表1-1电阻一温度关系表可以很直观的看到电阻的变化范围从242.649到2500629,在-55℃的时候其表现出的电阻值是125℃时所表现的电阻值的1030倍,这幺大的变化范围也为ADC测量带来了困难。测量电路如图1-1所示。如图1-1测量电路如上图所示NTC热敏电阻Rⅴ和测量电阻Rm(精密电阻)组成一个简单的串联分压电路,参考电压VCC Ref经过分压可以得到一个电压值随着温度值变化而变化的数值,这个电压的大小将反映出NTC电阻的人小,从而也就是相应温度值的反映。通过欧姆定律可以得到输出电压值Vadc和NTc电阻值的一个关系表达式:vadVre上+Rm/(Rv+Rm)那幺接下来的数据处理将基于式(1)展开:sPMC75F2413A的ADC为10-Bit的精度,其参考电SUNPLUS用热敏电阻做朵用温度压为5V,因此这里可以选择Vre£=5V。各温度点对应的ADC转换后的数字量可以计算。Dadc = 1024*Adc/5V(2)式(1)、(2)结合可以得到:Dadc 1024*Rm/(Rv+Rm)(3)如果这里取测量电阻Rm选择4.7K9,那幺可以计算出在-55℃时所对应的Dadc=1024*1000/(250062+100C)=4;在125℃时所对应的Dadc=1024*1000/(242.64+10C0)824。根据这样的对应关系对数据进行预处理,得到如下处理结果如表1-2所示:表1tatic const Int16 NTCTAB2[18119,20;21,22,23,24,26,27,29,30,32;34,36,38,40,42,44,47,49,52,55,57,61;64,67,71,74,78,82,86,90,95,99,104,109114120,150,156,161,168,172,180,187,194,201,208,215,22,230,238,247255,264,272,280,291,302,310;319328,338;347,357367,376,384;395,4C5,414r424;434444,453,464,47448,494,502;512,522,531,540,551,560,569,579,586;595,604,613,624,633,642,650;658,666,673,680,688:696,704,712,719,726,733,741;749,755,760,767,774,780,785,791,798,804,811,816,8827,832,837,842;847,851,856;862,868,873,856;860,64,868,872,376;879,883,886;890,893,896,899;902,905,908,911,914;917,919,922;924,927,929,931;934,936,938,940,942,94,946,947,949,951,953,954,956,958,959,961,962;964,965,966,968,969,970,971,973,974};//4.7K当然这也是应用例中所需要的一个很重要的转换表,这一部分是事先制作好的表格,将为接下来的处理提供参考依据。测量电阻Rm的选取是有一定的规律的,在实际的应用中不一定都需要测量全程温度,可以估算岀大致的温度范围。木着提高测量精度的宗旨:如果是应用在测量低温的系统中建议Rπ选择较大的电阻(10KΩ),如果在测量较高温的系统中建议Rn选择较小的电阻(1κΩ)等。线性插值在AEC进行数据采集的过程中不可能每个数值都在整温度所对应的AD数值上,所以如果在两个数据的中间一段就要对其进行进一步的精确定位。这样就必须知道采集到的数据在表1-2中的具体位置,因此要对数据表进行搜索、查找。线性表的查找(也称枍索),可以有比较常见的顺序查找、折半查找及分块查找等方法,分析线性表1-2可以得到折半查找的算法是比较高效的。Eg如果ADC采样的数值为Dade=360,即357
    2020-12-04下载
    积分:1
  • 库管理系统
    基于javaswing和javaDB的试题库管理系统~基于javaswing和javaDB的试题库管理系统~基于javaswing和javaDB的试题库管理系统~
    2020-12-11下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载