登录
首页 » Others » 景区旅游信息管理系统

景区旅游信息管理系统

于 2020-12-03 发布
0 251
下载积分: 1 下载次数: 1

代码说明:

在旅游景区,经常会遇到游客打听从一个景点到另一个景点的最短路径和最短距离,这类游客不喜欢按照导游图的线路来游览,而是挑选自己感兴趣的景点游览。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • ns-2.34 leach和mflood协议的添加详细笔记以及脚本分析
    详细描述了在ns2.34上leach议完美移植,没有任何bug.包括三个文件,一个word文档、leach和mflood协议的源代码,其中源代码是经过试验验证的,没有错误。包括协议的仿真脚本,和分析文件。
    2020-12-08下载
    积分:1
  • 汽车销售管理系统UML建模分析
    (1)根据网络上的资料查询,详细了解了汽车销售的现状、工作环境、开发软件的目的以及该系统所应达到的效果,并使用Microsoft Visio工具对系统进行建模,把系统分成几大模块进行开发,保证了系统开发的效率。 (2)根据模块化的构思,对该系统进行总体设计,包括系统的框架设计、结构设计、组件设计等并分配模块中的功能和所应达到的效果。
    2020-11-30下载
    积分:1
  • [源代码] C# WinForms 项目实战 - 人事工资管理系统
    ☆☆ 资源说明:☆☆☆ 系统功能:☆灵活的录入数据,使信息传递更快捷;系统采用人机对话方式,界面美观友好,信息查询灵活、方便,数据存储安全可靠;实现员工奖罚信息管理;实现员工工资自动计算;实现员工考评调动管理;对用户输入的数据,进行严格的数据检验,尽可能避免人为错误;系统最大限度地实现了易安装性、易维护性和易操作性;
    2020-11-30下载
    积分:1
  • 基于小波包熵和模糊C均值的轴承故障诊断MATLAB
    基于小波包熵和模糊C均值的轴承故障诊断MATLAB程序,代码中有注释,只要有MATLAB基础,理解起来比较简单。提供了一整套的故障诊断流程,先用小波包熵进行特征提取,再用FCM进行故障诊断。
    2021-05-06下载
    积分:1
  • EKF,UKF的matlab实现
    无迹卡尔曼滤波和扩展卡尔曼滤波的matlab仿真程序,验证后可用
    2020-12-12下载
    积分:1
  • 最小二乘法系统辨识matlab
    用matlab实现的最小二乘法用于系统辨识,从文件中读取数据,然后辨识。里面包括各种基于最小二乘法的算法,普通最小二乘,广义最小二乘。。。等等
    2020-12-05下载
    积分:1
  • LTE物理层simulink仿真
    LTE物理层的simulink仿真,帮助理解LTE物理层的行为。该simulink模型遵循Release10版本。
    2020-12-04下载
    积分:1
  • sfm matlab实现
    此代码利用MATLAB编程实现三维点云的重建。
    2021-05-06下载
    积分:1
  • 多智能体最优致性避障算法Matlab仿真源序.zip
    【实例简介】文件包里包含了多智能体最优一致性避障算法研究文章一篇及Matlab仿真源程序,使用一致性算法进行避障有利用多机器人快速到达目标位置
    2021-11-03 00:34:03下载
    积分:1
  • 基于高光谱成像的蓝莓内部品质检测 特征波长选择方法研究
    在特征波长选取方面有一些创新,可以作为参考。在特征波长选取方面有一些创新,可以作为参考。(基于高光谱成像的蓝莓内部品质检测特征波长选择方法研究古文君1 ,田有文 1* ,张芳1 ,赖兴涛 1 ,何宽1 ,姚萍1 ,刘博林 2)586-482016620010~15mm0.8~2.3g。fone3:(InSpector V10E, Spectral InFinland)1392pix×1040pixCCDL CCD2(IGV-B141OM, IMPERX Incorporated, USA), 150W1. CCD Camera; 2.Spectrometer; 3.Shot; 4. Light source; 5. Samples(3900 Illuminatior, Illumination Tech6.Translationplatform7.Lightsourcecontroller;8.computernologies inc.,USA)、(IRCP0076-19. Translation platform controllerCOM,)、(120cm×50cmx(DELL VoStro 5560D-1528Figure 1 Schematic diagram of hyperspectral imagingcmsystem400~1000nm,4722.8nmRRGY-4(10mm)(DBR45(successive projections algorithm, SPA(stepwise multiple linear regression, SMLR)(SPA)(SMLR)SPASPASMLRSPA-SPA、SMLR_SMLR、SPA- SMLRSMLR-SPA21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct5871.6BP(error back propagation)BP17(correlation coeffiient of calibration, Re)(root mean square error of calibration set, RMSEC)correlation coeffiient of pre-diction, Rp)(root mean square error of prediction set, RMSEP)ENVI 4.8(Research System Inc, ), MATLAB 2014a(The Math Works Inc)、TheUnscrambler9.7、 Excel2010(Ⅵ icrosoftdgle banddWcvef.BP models for soluble solidsThe selected characteristic wavelengthCurve of relative reflectanceExtract the region of interescontent and firmness prediction2figure 2 Flow chart of data processing280mm,68ms,28mm·s-。99%202.2600nm600nm2b2c)21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct5884823(2f)BPSavitzky-Golasavitzky -golayTable 1 The effect of different spectra preprocessingCalibration setPredictioSpectrum typeRMSECRMSEPOriginal spcctrum0.933/0.9230.3510.4040.9200.9100.508/0.319MSCThe spectrum after MSC processing0.940/0.9450.56lO.3120.9190.9320.516/0.282SNThe spectrum after SNV processin0.93709340.60210.24309220.9010.6320.462Savitzky-golayThe spectrum after Savitzky-Golay processing 0.955/0.9550.3240.2410.951/0.9490.400/0.2782.5SPA-SPA SMLRSMLR SPA-SMLR SMLR-SPASPA-SPASPASavitzky-GolaySPATable 2 The results of multi-stage characteristic wavelength selection methodnmCharacteristie wavelength selection methodSPA-SPA452,455,470,482,490,785,893,912,921,942,950455,470,482,785,893.912SMLR-SMLR457,508,516,534,543,51,556,568,712,720.774,778508,534,543,712,720,774SPA-SMLR452,455,470,482,490,785,893,912,921,942,950452,470,482,490,893,912SMLR-SPA457,508,516,534,543,551,556,568,712,720,774,78534,7202.6Savilzky-gola(FS)392SPA-SPASMLR-SMLRSMLR-SMLRSMLR-SPABPBP0.001500021994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct589BPBPSPA-SPARp RMseP0.9520.391°Brix,RpRMSEP0.9530.234BrixTable 3 Detection results of soluble solid content and firmness of blueberry based on different multi-stagecharacteristic wavelength selection methodsCalibration setPrediction setCharacteristic selection method Wavelength numberRMSECRMSEP3929550.9550.324/0.2410.9510.9490.400/0.278SPA-SPA0.9590.9560.3180.1530.9520.9530.391/0.234SMLR-SMLR0.9560.9340.414/0.243912109020.559/0.349SPA SMLR0.828/0.8581.3670.58582208091.440/0.719SMLR- SPA20.958/0.9360.402/0.3359320.9280.435/0,4041387nm1229nm91.5%BPRRMSEP0.904215.163lBP3Rv0.84V0.94Rv0.83,SEV0.63。400-1000nmSavitzky-GolayBPSPA-SPASPA-SPA21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct59048[1 KADER F,ROVEL. B Fractionation and identification of the phenolic compounds of highbush blueberries(Vaccinium corymbosumLUJ].Food Chemistry, 1996,55(1): 35-40「J,2012,33(1):340-342,2017,38(2):301-305.[4 MENDOZA F, LU R, ARIANA D,et al. Integrated spectral and image analysis of hyperspectral scattering data for prediction ofple [ruil firmness and soluble solids conlenl[J] Poslharvesl Biology and Technology, 2011, 62(2: 149-160[5 SUN M J, ZHANG D, LIU L,et al. How to predict the sugariness and hardness of melons a near-infrared [J]. Food Chemistry,2017,218(3:413-42116 SIEDLISKA A, BARANOWSKI P, MAZUREK W, ct al. Classification models of bruise and cultivar detection on the basis of hy-perspectral imaging data[J]. Computers and Electronics in Agriculture, 2014, 106: 66-74[7 LIU D, SUN D W, ZENG X N, el al. Recenl aDvances in wavelength seleclion lechniques for hyperspectral image processing inthe food industry[J]. Food Bioprocess Technol, 2014, 7: 307-323[8 ZHANG C, GUO C T, LIU F,et al. Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector ma-chine[j] Journal of Food Engincering, 2016, 179: 11-18[9J,2016,47(5:634-6402009,29(:1611-1615201536(12)171-17612]J,2012,32(11:3093309[13] LI B C, HOU B L, ZHANG D W,et al. Pears characteristics (soluble solids content and firmness prediction, varieties) testingInethods based on visible-near infrared hyperspecTral imaging[J]. OpLik, 2016, 127: 2624-2630[14] FAN S X, ZHANG B H,LI J B, et al. Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data[J. Postharvest Biology and Technology, 2016, 121: 51-61[15 RAJKUMAR P, WANG N,EIMASRY G, et al.Studies on banana fruit quality and maturity stages using hyperspectral imaging[ JIJournal of Food Engineering 2012, 108: 194-200,2015,36(16):10172015,35(8:2297-2302[18]WANG N,2007,23(2:151-155.「192008,39(5):91-9320」201536(10:70-74.[21] WU D, SUN D WAdvanced applications of hyperspectral imaging technology for food quality and safety analysis and assess-ment a review part T[J]. Innovative Food Science and Emerging Technologies, 2013, 19(4): 1-14J2014,35(8:57-61BP,2012.124」13,44(2):142-146.25],201523(6:1530-1537M011:41-48.[27,2013,24(10:1972-19762010,30(10):2729-2733?1994-2018ChinaAcadcmicJournaleLcctronicPublishingHousc.Allrightsreservedhttp://www.cnki.nct
    2020-12-07下载
    积分:1
  • 696516资源总数
  • 106436会员总数
  • 7今日下载