登录
首页 » Others » STM32F103C8T6的双路ADC采样

STM32F103C8T6的双路ADC采样

于 2020-12-03 发布
0 164
下载积分: 1 下载次数: 3

代码说明:

基于STM32F103C8T6最小系统板的双路ADC采样程序,可以同时采集两个模拟量的值

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy
    完整版,带目录,机器学习必备经典;大部头要用力啃。Machine learning A Probabilistic PerspectiveMachine LearningA Probabilistic PerspectiveKevin P. MurphyThe mit PressCambridge, MassachusettsLondon, Englando 2012 Massachusetts Institute of TechnologyAll rights reserved. No part of this book may be reproduced in any form by any electronic or mechanicalmeans(including photocopying, recording, or information storage and retrieval)without permission inwriting from the publisherFor information about special quantity discounts, please email special_sales@mitpress. mit. eduThis book was set in the HEx programming language by the author. Printed and bound in the UnitedStates of AmLibrary of Congress Cataloging-in-Publication InformationMurphy, Kevin Png:a piobabilistctive/Kevin P. Murphyp. cm. -(Adaptive computation and machine learning series)Includes bibliographical references and indexisBn 978-0-262-01802-9 (hardcover: alk. paper1. Machine learning. 2. Probabilities. I. TitleQ325.5M872012006.31-dc232012004558109876This book is dedicated to alessandro, Michael and stefanoand to the memory of gerard Joseph murphyContentsPreactXXVII1 IntroductionMachine learning: what and why?1..1Types of machine learning1.2 Supervised learning1.2.1Classification 31.2.2 Regression 83 Unsupervised learning 91.3.11.3.2Discovering latent factors 111.3.3 Discovering graph structure 131.3.4 Matrix completion 141.4 Some basic concepts in machine learning 161.4.1Parametric vs non-parametric models 161.4.2 A simple non-parametric classifier: K-nearest neighbors 161.4.3 The curse of dimensionality 181.4.4 Parametric models for classification and regression 191.4.5Linear regression 191.4.6Logistic regression1.4.7 Overfitting 221.4.8Model selection1.4.9No free lunch theorem242 Probability2.1 Introduction 272.2 A brief review of probability theory 282. 2. 1 Discrete random variables 282. 2.2 Fundamental rules 282.2.3B292. 2. 4 Independence and conditional independence 302. 2. 5 Continuous random variable32CONTENTS2.2.6 Quantiles 332.2.7 Mean and variance 332.3 Some common discrete distributions 342.3.1The binomial and bernoulli distributions 342.3.2 The multinomial and multinoulli distributions 352. 3.3 The Poisson distribution 372.3.4 The empirical distribution 372.4 Some common continuous distributions 382.4.1 Gaussian (normal) distribution 382.4.2Dte pdf 392.4.3 The Laplace distribution 412.4.4 The gamma distribution 412.4.5 The beta distribution 422.4.6 Pareto distribution2.5 Joint probability distributions 442.5.1Covariance and correlation442.5.2 The multivariate gaussian2.5.3 Multivariate Student t distribution 462.5.4 Dirichlet distribution 472.6 Transformations of random variables 492. 6. 1 Linear transformations 492.6.2 General transformations 502.6.3 Central limit theorem 512.7 Monte Carlo approximation 522.7.1 Example: change of variables, the MC way 532.7.2 Example: estimating T by Monte Carlo integration2.7.3 Accuracy of Monte Carlo approximation 542.8 Information theory562.8.1Entropy2.8.2 KL dive572.8.3 Mutual information 593 Generative models for discrete data 653.1 Introducti653.2 Bayesian concept learning 653.2.1Likelihood673.2.2 Prior 673.2.3P683.2.4Postedictive distribution3.2.5 A more complex prior 723.3 The beta-binomial model 723.3.1 Likelihood 733.3.2Prior743.3.3 Poster3.3.4Posterior predictive distributionCONTENTS3.4 The Dirichlet-multinomial model 783. 4. 1 Likelihood 793.4.2 Prior 793.4.3 Posterior 793.4.4Posterior predictive813.5 Naive Bayes classifiers 823.5.1 Model fitting 833.5.2 Using the model for prediction 853.5.3 The log-sum-exp trick 803.5.4 Feature selection using mutual information 863.5.5 Classifying documents using bag of words 84 Gaussian models4.1 Introduction974.1.1Notation974. 1.2 Basics 974. 1.3 MlE for an mvn 994.1.4 Maximum entropy derivation of the gaussian 1014.2 Gaussian discriminant analysis 1014.2.1 Quadratic discriminant analysis(QDA) 1024.2.2 Linear discriminant analysis (LDA) 1034.2.3 Two-claSs LDA 1044.2.4 MLE for discriminant analysis 1064.2.5 Strategies for preventing overfitting 1064.2.6 Regularized LDA* 104.2.7 Diagonal LDA4.2.8 Nearest shrunken centroids classifier1094.3 Inference in jointly Gaussian distributions 1104.3.1Statement of the result 1114.3.2 Examples4.3.3 Information form 1154.3.4 Proof of the result 1164.4 Linear Gaussian systems 1194.4.1Statement of the result 1194.4.2 Examples 1204.4.3 Proof of the result1244.5 Digression: The Wishart distribution4.5. 1 Inverse Wishart distribution 1264.5.2 Visualizing the wishart distribution* 1274.6 Inferring the parameters of an MVn 1274.6.1 Posterior distribution of u 1284.6.2 Posterior distribution of e1284.6.3 Posterior distribution of u and 2* 1324.6.4 Sensor fusion with unknown precisions 138
    2020-12-10下载
    积分:1
  • Matrix.h 和 Matrix.cpp(C++ 实现矩阵操作)
    实现了矩阵中的各种操作, 包括矩阵相加,相减,矩阵乘法,矩阵转秩,余子式,求行列式的值,求矩阵特征值,LU 分解,QR 分解,求现行方程组的解等等。 是任何做科学计算工作者必备的类库。此类库也是C++初学者极好的参考资料。类库的实现运用了运算符重载,友元,异常处理,文件输入输出,函数重载,指针,动态分配内存等一系列C++技术。此类库是我在美国研究生阶段的一个Term Project.品质保证。
    2020-12-01下载
    积分:1
  • 极化滤波抗干扰matlab
    极化滤波程序,很好的分析了极化技术在雷达抗干扰中的应用
    2021-05-07下载
    积分:1
  • 网上在线论坛-ASP.NET-C#
    开发网上在线论坛最终目的是为用户提供一个良好的技术交流平台,得到用户的及时反馈。
    2020-12-09下载
    积分:1
  • VS2010 MFC 个人信息管理系统
    用于大学毕业设计或者实践科目的程序,采用vs2010 MFC+Access数据库编写,代码内容适合学习!
    2020-06-29下载
    积分:1
  • PDF转WORD(免安装版)
    PDF转WORD(免安装版),解压缩就能用
    2020-11-29下载
    积分:1
  • 基于Gh0st3.8修改译成功的远控制源代码
    基于Gh0st3.8修改编译成功的远程控制源代码。仅供学习,不要做坏事!
    2020-12-06下载
    积分:1
  • 基于改进蚁群算法的QoS组播路由研究
    基于改进蚁群算法的QoS组播路由问题研究基于改进蚁群算法的QoS组播路由问题研究
    2020-12-01下载
    积分:1
  • 东方财富网公告爬取2
    爬取东方财富网公司公告,包括爬取利用ajax加载的网页,以及如何模拟翻页。与上一版增加了对各种错误机制的处理。
    2021-05-06下载
    积分:1
  • HFSS射频仿真设计实例大全的实例
    全书600页,采用最新HFSS15版本,该书系统讲解了HFSS操作方法,并提供了大量的工程设计实例,部分实例做出实物仿真与测试对比。基础篇:包括HFSS功能概述、HFSS建模操作、网格划分设置、变量设置与调谐优化、仿真结果输出,以及HFSS与其他软件的联合、数据输入/输出等;实例篇:包括PCB微带线、微带滤波器、腔体滤波器、介质滤波器、功分器、耦合器、微带天线、GPS/北斗天线、键合线匹配、SMA头、LTCC、DRO、频率选择表面的设计与仿真。
    2021-05-06下载
    积分:1
  • 696518资源总数
  • 105661会员总数
  • 6今日下载