登录
首页 » Others » C语言计算特征值和特征向量

C语言计算特征值和特征向量

于 2020-12-04 发布
0 216
下载积分: 1 下载次数: 1

代码说明:

本代码用C语言进行编程,可以计算矩阵的特征值和相应的特征向量。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Matlab的模拟退火算法工具包
    这是Matlab的模拟退火算法的工具包,对学习、应用SA算法很有用
    2020-11-29下载
    积分:1
  • 稀疏自码深度学习的Matlab实现
    稀疏自编码深度学习的Matlab实现,sparse Auto coding,Matlab codetrain, m/7% CS294A/CS294W Programming Assignment Starter CodeInstructions%%%This file contains code that helps you get started ontheprogramming assignment. You will need to complete thecode in sampleIMAgEsml sparseAutoencoder Cost m and computeNumericalGradientml For the purpose of completing the assignment, you domot need tochange the code in this filecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencodtrain.m∥%%========%6% STEP 0: Here we provide the relevant parameters valuesthat willl allow your sparse autoencoder to get good filters; youdo not need to9 change the parameters belowvisibleSize =8*8; number of input unitshiddensize 25number of hidden unitssparsity Param =0.01; desired average activation ofthe hidden units7 (This was denoted by the greek alpharho, which looks like a lower-case pcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod4/57train.,m∥in the lecture notes)1 ambda=0.0001%o weight decay parameterbeta 3%o weight of sparsity penalty term%%==:79 STEP 1: Implement sampleIMAGESAfter implementing sampleIMAGES, the display_networkcommand shouldfo display a random sample of 200 patches from the datasetpatches sampleIMAgES;display_network(patches(:, randi(size(patches, 2), 204, 1)), 8)%为产生一个204维的列向量,每一维的值为0~10000curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod5/57train.m/v%中的随机数,说明是随机取204个 patch来显示%o Obtain random parameters thetatheta= initializeParameters ( hiddenSize, visibleSize)%%=============三三三三====================================97 STEP 2: Implement sparseAutoencoder CostYou can implement all of the components (squared errorcost, weight decay termsparsity penalty) in the cost function at once, butit may be easier to do%o it step-by-step and run gradient checking (see STEP3 after each stepWecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod6/57train. m vb suggest implementing the sparseAutoencoder Cost functionusing the following steps(a) Implement forward propagation in your neural networland implement the%squared error term of the cost function. Implementbackpropagation tocompute the derivatives. Then (using lambda=beta=(run gradient Checking%to verify that the calculations corresponding tothe squared error costterm are correctcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod7/57train. m vl(b) Add in the weight decay term (in both the cost funcand the derivativecalculations), then re-run Gradient Checking toverify correctnessl (c) Add in the sparsity penalty term, then re-run gradiChecking toverify correctnessFeel free to change the training settings when debuggingyour%o code. (For example, reducing the training set sizecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod8/57train m vl/number of hidden units may make your code run fasterand setting betaand/or lambda to zero may be helpful for debuggingHowever, in yourfinal submission of the visualized weights, please useparameters web gave in Step 0 abovecoS七grad]sparseAutoencoderCost(theta, visibleSize,hiddensize, lambda,sparsityParam, beta,patches)二〓二二二二二二二〓二〓二〓二〓=二====〓=curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod9/57train.m vlll96% STeP 3: Gradient CheckingHint: If you are debugging your code, performing gradienchecking on smaller modelsand smaller training sets (e. g, using only 10 trainingexamples and 1-2 hiddenunits) may speed things upl First, lets make sure your numerical gradient computationis correct for a%o simple function. After you have implemented computeNumerun the followingcheckNumericalGradientocurer:YiBinYUyuyibintony@163.com,WuYiUniversityDeep Learning, MATLAB Code for Sparse Autoencode10/57
    2020-12-05下载
    积分:1
  • 成像原理、视差图以及uv视差计算PPT文档及代码
    资源中主要是两个ppt:相机成像原理和视差图、uv视差图,另外含有计算uv视差的代码。因为ppt里涉及到一些图和动画,本人不是ppt高手,做的很辛苦,所以象征性地收1个资源分~
    2020-12-06下载
    积分:1
  • 基于51单片机电子密码锁的设计 C
    根据设定好的密码,采用二个按键实现密码的输入功能,当密码输入正确之后,锁就打开,如果输入的三次的密码不正确,就锁定按键3秒钟,同时发现报警声,直到没有按键按下3种后,才打开按键锁定功能;否则在3秒钟内仍有按键按下,就重新锁定按键3秒时间并报警。
    2020-12-12下载
    积分:1
  • Java POI 导入导出Excel简单实例源代码
    Java POI 导入导出Excel简单实例源代码该源代码的jar包,参见以下博文附录截图Java POI导出EXCEL经典实现 Java导出Excel弹出下载框http://blog.csdn.net/evangel_z/article/details/7332535web页面导出Excel文档,路径:http://localhost:8080/poi/export
    2020-11-04下载
    积分:1
  • STM32的DS3231时钟芯片驱动串口测试
    STM32F1串口打印DS3231时间输出,测试.直接可以使用的,使用的原子STM32的工程模版通俗易懂//ALIENTEK战舰STM32开发板实验22//IIC 实验 //技术支持:www.openedv.com//广州市星翼电子科技有限公司
    2020-12-07下载
    积分:1
  • 基于hmm的数字语音识别_matlab版
    提供一个matlab版本的基于hmm的数字语音识别程序,经过调试,有注释;并且提供一个有40人的数字语音语料库;很实用。
    2020-12-03下载
    积分:1
  • VISIO最全无敌电子元件器件库
    VISIO最全无敌电子元件器件库,资源是非常详细的,积分当然贵了些
    2020-12-06下载
    积分:1
  • android实现微信朋友圈和微信好友分享功能
    android实现微信朋友圈和微信好友分享功能,只需要换一下appid就可以直接拿到项目中使用。希望大家多多关注我,我的博客地址:https://blog.csdn.net/k571039838k
    2020-11-29下载
    积分:1
  • 虚拟同步发电机
    LC滤波器虚拟同步发电机模型,2015b matlab,无功PI控制,有功虚拟惯量阻尼控制
    2020-11-02下载
    积分:1
  • 696516资源总数
  • 106409会员总数
  • 8今日下载