-
Android应用源码大学生考勤项目源码
本项目是一个基于安卓的学生考勤系统项目源码,运行注意事项:1.注册时请在/sdcard/目录下建立myfile目录才能注册成功。2.本系统要使用请先导入学生数据。数据格式为excel电子文档。请确保文档中应有学号,姓名列。3.本系统中配有c编译器,若想使用读卡器功能必须自己配轩c编译器。相关具体技术请参考android下jni编程相关知识。项目编译版本2.3.3默认编码GBK
- 2020-12-12下载
- 积分:1
-
2013数学建模国赛B题思考过程和模型还有代码(适合初学者)
这个是2013数学建模国赛B题的一个完整的解答过程,包括了对题目的思考,模型的建立,代码的编写,论文的写法。当然还包括了最终的结果-----完整的报告。
- 2021-05-06下载
- 积分:1
-
基于SSH 三大框架的网上书店
本系统基于SSH的网上图书商店,压缩包包含文档和源代码,数据库只需按照要求即可运行,对于课程设计和毕业设计的帮助很大,大家可以下载看看
- 2020-11-02下载
- 积分:1
-
【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy
完整版,带目录,机器学习必备经典;大部头要用力啃。Machine learning A Probabilistic PerspectiveMachine LearningA Probabilistic PerspectiveKevin P. MurphyThe mit PressCambridge, MassachusettsLondon, Englando 2012 Massachusetts Institute of TechnologyAll rights reserved. No part of this book may be reproduced in any form by any electronic or mechanicalmeans(including photocopying, recording, or information storage and retrieval)without permission inwriting from the publisherFor information about special quantity discounts, please email special_sales@mitpress. mit. eduThis book was set in the HEx programming language by the author. Printed and bound in the UnitedStates of AmLibrary of Congress Cataloging-in-Publication InformationMurphy, Kevin Png:a piobabilistctive/Kevin P. Murphyp. cm. -(Adaptive computation and machine learning series)Includes bibliographical references and indexisBn 978-0-262-01802-9 (hardcover: alk. paper1. Machine learning. 2. Probabilities. I. TitleQ325.5M872012006.31-dc232012004558109876This book is dedicated to alessandro, Michael and stefanoand to the memory of gerard Joseph murphyContentsPreactXXVII1 IntroductionMachine learning: what and why?1..1Types of machine learning1.2 Supervised learning1.2.1Classification 31.2.2 Regression 83 Unsupervised learning 91.3.11.3.2Discovering latent factors 111.3.3 Discovering graph structure 131.3.4 Matrix completion 141.4 Some basic concepts in machine learning 161.4.1Parametric vs non-parametric models 161.4.2 A simple non-parametric classifier: K-nearest neighbors 161.4.3 The curse of dimensionality 181.4.4 Parametric models for classification and regression 191.4.5Linear regression 191.4.6Logistic regression1.4.7 Overfitting 221.4.8Model selection1.4.9No free lunch theorem242 Probability2.1 Introduction 272.2 A brief review of probability theory 282. 2. 1 Discrete random variables 282. 2.2 Fundamental rules 282.2.3B292. 2. 4 Independence and conditional independence 302. 2. 5 Continuous random variable32CONTENTS2.2.6 Quantiles 332.2.7 Mean and variance 332.3 Some common discrete distributions 342.3.1The binomial and bernoulli distributions 342.3.2 The multinomial and multinoulli distributions 352. 3.3 The Poisson distribution 372.3.4 The empirical distribution 372.4 Some common continuous distributions 382.4.1 Gaussian (normal) distribution 382.4.2Dte pdf 392.4.3 The Laplace distribution 412.4.4 The gamma distribution 412.4.5 The beta distribution 422.4.6 Pareto distribution2.5 Joint probability distributions 442.5.1Covariance and correlation442.5.2 The multivariate gaussian2.5.3 Multivariate Student t distribution 462.5.4 Dirichlet distribution 472.6 Transformations of random variables 492. 6. 1 Linear transformations 492.6.2 General transformations 502.6.3 Central limit theorem 512.7 Monte Carlo approximation 522.7.1 Example: change of variables, the MC way 532.7.2 Example: estimating T by Monte Carlo integration2.7.3 Accuracy of Monte Carlo approximation 542.8 Information theory562.8.1Entropy2.8.2 KL dive572.8.3 Mutual information 593 Generative models for discrete data 653.1 Introducti653.2 Bayesian concept learning 653.2.1Likelihood673.2.2 Prior 673.2.3P683.2.4Postedictive distribution3.2.5 A more complex prior 723.3 The beta-binomial model 723.3.1 Likelihood 733.3.2Prior743.3.3 Poster3.3.4Posterior predictive distributionCONTENTS3.4 The Dirichlet-multinomial model 783. 4. 1 Likelihood 793.4.2 Prior 793.4.3 Posterior 793.4.4Posterior predictive813.5 Naive Bayes classifiers 823.5.1 Model fitting 833.5.2 Using the model for prediction 853.5.3 The log-sum-exp trick 803.5.4 Feature selection using mutual information 863.5.5 Classifying documents using bag of words 84 Gaussian models4.1 Introduction974.1.1Notation974. 1.2 Basics 974. 1.3 MlE for an mvn 994.1.4 Maximum entropy derivation of the gaussian 1014.2 Gaussian discriminant analysis 1014.2.1 Quadratic discriminant analysis(QDA) 1024.2.2 Linear discriminant analysis (LDA) 1034.2.3 Two-claSs LDA 1044.2.4 MLE for discriminant analysis 1064.2.5 Strategies for preventing overfitting 1064.2.6 Regularized LDA* 104.2.7 Diagonal LDA4.2.8 Nearest shrunken centroids classifier1094.3 Inference in jointly Gaussian distributions 1104.3.1Statement of the result 1114.3.2 Examples4.3.3 Information form 1154.3.4 Proof of the result 1164.4 Linear Gaussian systems 1194.4.1Statement of the result 1194.4.2 Examples 1204.4.3 Proof of the result1244.5 Digression: The Wishart distribution4.5. 1 Inverse Wishart distribution 1264.5.2 Visualizing the wishart distribution* 1274.6 Inferring the parameters of an MVn 1274.6.1 Posterior distribution of u 1284.6.2 Posterior distribution of e1284.6.3 Posterior distribution of u and 2* 1324.6.4 Sensor fusion with unknown precisions 138
- 2020-12-10下载
- 积分:1
-
微信小程序源码-合集9(共计26套小程序源码+截图)
微信小程序源码,包含:影音娱乐、优惠券卡卷、娱乐搞笑、阅读读书、运动健身、招聘行业、智能家居、装修装饰、租赁行业等分类。
- 2019-10-11下载
- 积分:1
-
matlab2017b实现深度学习训练自己图像集合
包含4类原始图像。需要改变路径,就能直接使用。将图像数据和label转换成matlab直接使用的.mat文件。
- 2020-11-28下载
- 积分:1
-
基于Verilog的cordic反正切FPGA例程
基于Verilog的cordic反正切FPGA例程,仅作学习使用。
- 2020-11-28下载
- 积分:1
-
springboot投票系统
用springboot基于SSM写的在线投票系统,包含数据库和源码,采用Springboot技术,开发工具idea,下载后请配置运行环境。
- 2020-11-28下载
- 积分:1
-
hx711+称重传感器+stc89c52
电子称,stc89c52读取hx711,串口调节助手显示实际重量
- 2020-11-28下载
- 积分:1
-
CAN通信资料合集(精选)
CAN通信资料合集。全部是本人看过后觉得有用收益的内容,包括1.CAN通信入门教程(文档)。2.汽车CAN总线系统原理电子书。3.单片机的CAN代码。(1)STM32的CAN通信C代码。(2)51单片机+MCP2515的C代码。
- 2020-11-29下载
- 积分:1