-
C语言FIR滤波器
本程序用c语言实现FIR滤波器设计,采用的凯撒窗函数法,滤波器阶数、阻带宽度、阻带衰减等都可以通过修改相关系数达到特定的需要,同时通过调整相关系数可以实现带通,带阻,低通,高通等功能。
- 2020-12-05下载
- 积分:1
-
稀疏自编码深度学习的Matlab实现
稀疏自编码深度学习的Matlab实现,sparse Auto coding,Matlab codetrain, m/7% CS294A/CS294W Programming Assignment Starter CodeInstructions%%%This file contains code that helps you get started ontheprogramming assignment. You will need to complete thecode in sampleIMAgEsml sparseAutoencoder Cost m and computeNumericalGradientml For the purpose of completing the assignment, you domot need tochange the code in this filecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencodtrain.m∥%%========%6% STEP 0: Here we provide the relevant parameters valuesthat willl allow your sparse autoencoder to get good filters; youdo not need to9 change the parameters belowvisibleSize =8*8; number of input unitshiddensize 25number of hidden unitssparsity Param =0.01; desired average activation ofthe hidden units7 (This was denoted by the greek alpharho, which looks like a lower-case pcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod4/57train.,m∥in the lecture notes)1 ambda=0.0001%o weight decay parameterbeta 3%o weight of sparsity penalty term%%==:79 STEP 1: Implement sampleIMAGESAfter implementing sampleIMAGES, the display_networkcommand shouldfo display a random sample of 200 patches from the datasetpatches sampleIMAgES;display_network(patches(:, randi(size(patches, 2), 204, 1)), 8)%为产生一个204维的列向量,每一维的值为0~10000curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod5/57train.m/v%中的随机数,说明是随机取204个 patch来显示%o Obtain random parameters thetatheta= initializeParameters ( hiddenSize, visibleSize)%%=============三三三三====================================97 STEP 2: Implement sparseAutoencoder CostYou can implement all of the components (squared errorcost, weight decay termsparsity penalty) in the cost function at once, butit may be easier to do%o it step-by-step and run gradient checking (see STEP3 after each stepWecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod6/57train. m vb suggest implementing the sparseAutoencoder Cost functionusing the following steps(a) Implement forward propagation in your neural networland implement the%squared error term of the cost function. Implementbackpropagation tocompute the derivatives. Then (using lambda=beta=(run gradient Checking%to verify that the calculations corresponding tothe squared error costterm are correctcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod7/57train. m vl(b) Add in the weight decay term (in both the cost funcand the derivativecalculations), then re-run Gradient Checking toverify correctnessl (c) Add in the sparsity penalty term, then re-run gradiChecking toverify correctnessFeel free to change the training settings when debuggingyour%o code. (For example, reducing the training set sizecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod8/57train m vl/number of hidden units may make your code run fasterand setting betaand/or lambda to zero may be helpful for debuggingHowever, in yourfinal submission of the visualized weights, please useparameters web gave in Step 0 abovecoS七grad]sparseAutoencoderCost(theta, visibleSize,hiddensize, lambda,sparsityParam, beta,patches)二〓二二二二二二二〓二〓二〓二〓=二====〓=curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod9/57train.m vlll96% STeP 3: Gradient CheckingHint: If you are debugging your code, performing gradienchecking on smaller modelsand smaller training sets (e. g, using only 10 trainingexamples and 1-2 hiddenunits) may speed things upl First, lets make sure your numerical gradient computationis correct for a%o simple function. After you have implemented computeNumerun the followingcheckNumericalGradientocurer:YiBinYUyuyibintony@163.com,WuYiUniversityDeep Learning, MATLAB Code for Sparse Autoencode10/57
- 2020-12-05下载
- 积分:1
-
二值图像细化
【实例简介】该算法是对二值图像进行细化,对传统的Hilditch算法进行了改进。用matlab进行了仿真。
- 2021-11-03 00:35:09下载
- 积分:1
-
INA226.zip
利用stm32f103驱动多路INA226的方法,
- 2020-12-03下载
- 积分:1
-
基于MATLAB/Simulink的光伏电池建模与仿真
基于MATLAB/Simulink的光伏电池建模与仿真
- 2020-11-28下载
- 积分:1
-
蓝牙系列书籍:蓝牙学习丛书(蓝牙4.0BLE开发完全手册+蓝牙核心技术及应用+蓝牙协议的学习+蓝牙协议及其源代码分析)
蓝牙系列书籍:蓝牙学习丛书(蓝牙4.0BLE开发完全手册+蓝牙核心技术及应用+蓝牙协议的学习+蓝牙协议及其源代码分析)
- 2020-12-06下载
- 积分:1
-
使用CC2591作为CC2530的功放
使用CC2591作为CC2530的功放, CC2591 PAThe absolute maximum ratings and operating conditions listed in the CC2530 datasheet [1]and the CC2591 datasheet [4] must be followed at all times. Stress exceeding one or more ofthese limiting values may cause permanent damage to any of the devicesNote that these characteristics are only valid when using the recommended register settingspresented in Section 4.6 and in Chapter 8, and the CC2530 - EM reference designOperating Frequency240524835MHzOperating Supply Voltage2036VOperating Temperature-40CTC=25C, VDD=3.0V, f=2440 MHz if nothing else is stated. All parameters are measuredon the CC2530-Cc2591EM reference design [11] with a 50 Q2 loadReceive CurrentWait for sync, -90 dBm input levelWait for sync, -50 dBm input level24mATXPOWER OXE5166mATXPOWER OXD5149mATXPOWER OXC5138mATXPOWER OXB5127mATransmit currentTXPOWER OXA5115ATXPOWER = 0X95100mATXPOWER = 0X8594ATXPOWE=0×75mATXPOWE=0×6579APower Down Current PM2UAISTRUMENTSPage 3 of 19SWRA308ATC=25C, Vdd=3.0V, f= 2440 MHz if nothing else is stated. All parameters are measuredon the CC2530-CC2591 EM reference design with a 50 Q2 loadReceive Sensitivity HGM 1 %PER, IEEE 802. 15.4[6] requires -85 dBm-988dBmReceive Sensitivity LGM1 PER, IEEE 802. 15.4 [6] requires -85 dBm-90.4dBmSaturationlEEE 802.15. 4 [6] requires-20 dBm10dBmWanted signal 3 db above the sensitivity levelIEEE 802.15.4 modulated interferer at ieee 802.15.4 channelsInterferer Rejection+5 MHz from wanted signal, IEEE 802. 15. 4 [6] requires 0 dBdB+10 MHz from wanted signal, IEEE 802. 15. 4 [6] requires 30 dB49dB+20 MHz from wanted signal wanted signal at- 82d BmdBdue to in the external lna and the offset in cc2530 the rssi readouts from cc2530CC2591 is different from rssi offset values for a standalone cc2530 design the offsetvalues are shown in table 4.4High Gain Mode79LoW Gain mode67Real rssi Register value-Rssl offsetISTRUMENTSPage 4 of 19SWRA308ATc=25C, Vdd=3.0V, f=2440 MHz if nothing else is stated All parameters are measuredon the CC2530-CC2591 EM reference design with a 50 Q2 load Radiated measurements aredone with the kit antennaRadiated Emissionwith TXPOWer Oxe5Conducted 2. RF (FCC restricted band)-462|dBmConducted 3. RF(FCC restricted band46.5 dBmComplies withFCC 15.247. SeeChapter 7 for moredetails about regulatoryRadiated 2.RF(FCC restricted band)42.2dBmrequirements andcomplianceIEEE 802.15.4[6]requires max.35%%Measured as defined by IEEE 802.15. 4 6TXPOWER OxE5. f= EEE 802.15. 4 channels13TXPOWER= OXD5. f= EEE 802.15.4 channelsTXPOWER= OXC5 f= EEE 802.15.4 channelsMax error∨ ectorTXPOWER OxB5 f= IEEE 802.15. 4 channelsMagnitude(EVM)TXPOWER OxA5. f= IEEE 802.15.4 channelsTXPOWER 0X95. f= IEEE 802. 15.4 channels643333%%%%%%%TXPOWER= 0x85. f= iEEE 802. 15.4 channelsTXPOWER =0x75 f= IEEE 802. 15.4 channels%TXPOWER= 065. f= iEEE 802. 15.4 channelsThe RF output power of the CC2530- CC2591 EM is controlled by the 7-bit value in theCC2530 TXPOWER register. Table 4.6 shows the typical output power and currentconsumption for the recommended power settings The results are given for Tc= 25 C, Vdd3.0V and f= 2440 MHz, and are measured on the cC2530-CC2591 EM reference designwith a 50 Q2 load. For recommendations for the remaining CC2530 registers, see Chapter 8 oruse the settings given by SmartRF StudioOXE520166OxD519149OxC18138OxB517127OxA5161150x95141000x8513940X75860x651079Note that the recommended power settings given in Table 4.6 are a subset of all the possibleTXPOWER register settings. However, using other settings than those recommended mightINSTRUMENTSPage 5 of 19SWRA308Aresult in suboptimal performance in areas like current consumption, EVM, and spuriousemissionTc=25C, Vdd=3.0V, f=2440 MHz if nothing else is stated All parameters are measuredon the CC2530-CC2591EM reference design with a 50 32 load2221-2V201918171611121314151617181920212223242526251510OxE5OxC5OxA50X850x65540-30-20-1001020304050607080ISTRUMENTSPage 6 of 19SWRA308A98Avg 3.6VAva 3vAvg 2V110111213141516171819202122232425261023.6V-1062V-110-40-30-20-100102030405060708070604020-Wanted signal at:-82 dBm10ISTRUMENTSPage 7 of 19SWRA308ACC2530-CC2591EM High Gain ModeC C2530-CC2591EM Low Gain Mode- CC2530EM40000-100110100908070-60-50-40-30-20-100The IEEE standard 802.15. 4 [8] requires the transmitted spectral power to be less than thelimits specified in table 4.7If-fc>3.5 MHz-20 dB-30 dBmThe results below are given for Tc=25 C, Vdd=3.0V and f= 2440 MHz, and are measuredon the CC2530-CC259 1EM reference design with a 50 Q loadIEEE absoluteChannel 182432.52435243752442524452447.5ISTRUMENTSPage 8 of 19SWRA308AOnly a few external components are required for the CC2530-CC2591 reference design. Atypical application circuit is shown below in Figure 5.1. Note that the application circuit figuredoes not show how the board layout should be done. The board layout will greatly influencethe RF performance of the CC2530-CC2591EM. TI provides a compact CC2530CC2591 EM reference design that it is highly recommended to follow. The layout, stack-upand schematic for the CC2591 need to be copied exactly to obtain good performance. Notethat the reference design also includes bill of materials with manufacturers and part numbersL102 L10=TI INF inductorVDD13cc2530LA 1RF PANTCC2591 RF NFNPA EN(P1 1)i工工I NA FNP:1HGM ENPO 7)T:1Proper power supply decoupling must be used for optimum performance. In Figure 5.1, onlythe decoupling components for the CC2591 are shown. This is because, in addition todecoupling, the parallel capacitors C11, C101, and C131 together with, L101, L102, TL11TL101 and TL131 also work as RF loads. These therefore ensure the optimal performancefrom the CC2591. C161 decouples the AvDD blAs power.The placement and size of the decoupling components, the power supply filtering and thePCB transmission lines are very important to achieve the best performance Details about theimportance of copying the CC2530-CC2591EM reference design exactly and potentialconsequences of changes are explained in chapter 6The RF input/output of CC2530 is high impedance and differential. The CC2591 includes abalun and a matching network in addition to the PA, LNa and RF switches which makes theinterface to the CC2530 seamless. Only a few components between the CC2530 andCC2591 necessary for RF matching For situation with extreme mismatch(VSWR 6: 1 till 12: 1out-of-band as shown in Figure 6.2) it is recommended to include all the components asshown in Figure 5.1ISTRUMENTSPage 9 of 19SWRA308ANote that the PCB transmission lines that connect the two devices also are part of the RFmatching. It is therefore important to copy the distance between the devices, the transmissionlines and the stack-up of the PCB according to the reference design to ensure optimumperformanceThe network between the CC2591 and the antenna(L111, C112, C111 C113 and L112matches the CC2591 to a 50 2 load and provides filtering to pass regulatory demands. C111also works as a dc-blockR151 is a bias resistor the bias resistor is used to set an accurate bias current for internaluse in the cc2591The TI reference design contains two antenna options. As default, the Sma connector isconnected to the output of CC2591 through a 0 Q2 resistor. This resistor can be soldered offand rotated 90 clockwise in order to connect to the PCB antenna, which is a planar invertedF antenna(PIFA). Note that all testing and characterization has been done using the SMAconnector. The PCB antenna has only been functionally tested by establishing a link betweentwo EMs. Please refer to the antenna selection guide [6] and the Inverted F antenna designnote [7 for further details on the antenna solutionsISTRUMENTSPage 10 of 19SWRA308A
- 2020-11-30下载
- 积分:1
-
S函数的RBF神经网络PID控制器Simulink仿真
S函数的RBF神经网络PID控制器Simulink仿真
- 2020-12-04下载
- 积分:1
-
漂亮的后台登录界面(HTML+CSS模板)
从网上整理优化的漂亮后台登录界面(模板),如果您自认为美工不太好的话、或者不想动脑筋去构思一个后台登录界面,那么请相信本款后台登录的界面模板会让您满意,因为它来自专业WEB前端设计师之手,采用经典的蓝色风格界面,大方简约,效果演示如上所示
- 2021-05-06下载
- 积分:1
-
基于MATLAB的双馈电机仿真模型
基于MATLAB的双馈电机仿真模型,用于学习参考
- 2020-06-27下载
- 积分:1