登录
首页 » Others » python实现CNN中文文本分类

python实现CNN中文文本分类

于 2020-12-06 发布
0 204
下载积分: 1 下载次数: 1

代码说明:

CNN 中文文本挖掘 文本分类 python 深度学习 机器学习

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 上位机监控软件MODBUS(C#)
    c# MODBUS协议 上位机.htm软件的基本结构:采用定时器(Timer控件)为时间片。串口采用serialPort1_DataReceived中断接收,并进行MODBUS格式判断。把正确接收的数据取出,转换为有特定的结构体中。数据通过时间片实时刷新。
    2020-12-05下载
    积分:1
  • 51单片机遥控器控制步进电机序+论文+原理图
    51单片机遥控器控制步进电机程序+论文+原理图 本人毕业设计 按照里面的做 一点都不会错 而且我只破解遥控器的数字码 所以只要是 电视遥控器就一定能用 亲自试验过
    2020-07-03下载
    积分:1
  • ADS和HFSS联合仿真
    比较详细的描述了微波器件分别在ADS和HFSS中的仿真过程的详解,并将二者的仿真结果加以对比~!
    2020-11-29下载
    积分:1
  • 企业人事管理系统(系统+文档)java+oracle
    系统实现目标(1)操作简单方便、界面简洁大方。(2)方便快捷的档案管理。(3)简单适用的考勤和奖惩管理。(4)简单适用的培训管理。(5)针对企业中不同的待遇标准,实现待遇账套管理。(6)简单明了的账套维护功能。(7)方便快捷的账套人员设置。(8)功能强大的待遇报表功能。(9)系统运行稳定、安全可靠。1.2系统基本模块 (1)人事管理:档案管理、考勤管理、奖惩管理、培训管理。 (2)待遇管理:帐套管理、人员设置、统计报表。 (3)系统维护:企业架构、基本资料、初始化系统。 (4)用户管理:新增用户、修改密码。 (5)系统工具:打开计算器、打开WO
    2020-12-01下载
    积分:1
  • MATLAB 并联机构工作空间搜索代码
    典型6-sps并联机构空间搜索,通用!!
    2020-11-28下载
    积分:1
  • MyEclipse_10破解包
    另一个破解MyEclipse的工具,网上流传有几种,这个的结果是:本人没有粘贴激活码,Patch_Key等等,只是把MyEclipse安装目录的一些文件替换了,其中有一个.ini配置文件,若干Plugin文件夹里的子文件,就完成了破解,大家尽管可以尝试。
    2020-12-05下载
    积分:1
  • matlab薛定谔方的仿真
    在非线性光纤光学的必须仿真方程,包括spm,xpm以及损耗的薛定谔方程。其中有10多个小仿真程序,以及其中用到的函数。
    2020-06-27下载
    积分:1
  • 系统辨识大牛Ljung写的MATLAB系统辨识使用手册
    系统辨识大牛Ljung编写的MATLAB系统辨识使用手册,这本书详细地介绍了在MATLAB已经所属simulink环境下,系统辨识工具箱的一些使用办法,是一本非常经典的教材!Revision Historypril 1988First printingJuly 1991Second printingMay1995Third printingNovember 2000 Fourth printingRevised for Version 5.0(Release 12)pril 2001Fifth printingJuly 2002Online onlyRevised for Version 5.0.2 Release 13)June 2004Sixth printingRevised for Version 6.0.1(Release 14)March 2005Online onlyRevised for Version 6.1.1Release 14SP2)September 2005 Seventh printingRevised for Version 6.1.2(Release 14SP3)March 2006Online onlyRevised for Version 6.1.3(Release 2006a)September 2006 Online onlyRevised for Version 6.2 Release 2006b)March 2007Online onlyRevised for Version 7.0 ( Release 2007a)September 2007 Online onlyRevised for Version 7.1 (Release 2007bMarch 2008Online onlyRevised for Version 7.2(Release 2008a)October 2008Online onlyRevised for Version 7.2.1 Release 2008b)March 2009Online onlyRevised for Version 7.3(Release 2009a)September 2009 Online onlyRevised for Version 7.3.1(Release 2009b)March 2010Online onlyRevised for Version 7. 4 (Release 2010a)eptember2010 Online onlyRevised for Version 7.4.1(Release 2010b)pril 2011Online onlRevised for Version 7.4.2(Release 2011a)September 2011 Online onlyRevised for Version 7.4.3(Release 2011b)March 2012Online onlyRevised for Version 8.0( Release 2012aabout the DevelopersAbout the Developersystem Identification Toolbox software is developed in association with thefollowing leading researchers in the system identification fieldLennart Ljung. Professor Lennart Ljung is with the department ofElectrical Engineering at Linkoping University in Sweden. He is a recognizedleader in system identification and has published numerous papers and booksin this areaQinghua Zhang. Dr. Qinghua Zhang is a researcher at Institut Nationalde recherche en Informatique et en Automatique(INria) and at Institut deRecherche en Informatique et systemes Aleatoires (Irisa), both in rennesFrance. He conducts research in the areas of nonlinear system identificationfault diagnosis, and signal processing with applications in the fields of energyautomotive, and biomedical systemsPeter Lindskog. Dr. Peter Lindskog is employed by nira dynamiAB, Sweden. He conducts research in the areas of system identificationsignal processing, and automatic control with a focus on vehicle industryapplicationsAnatoli Juditsky. Professor Anatoli Juditsky is with the laboratoire JeanKuntzmann at the Universite Joseph Fourier, Grenoble, france. He conductsresearch in the areas of nonparametric statistics, system identification, andstochastic optimizationAbout the developersContentsChoosing Your System Identification ApproachLinear model structures1-2What Are Model objects?Model objects represent linear systemsAbout model data1-5Types of Model objectsDynamic System Models1-9Numeric Models1-11umeric Linear Time Invariant (LTD Models1-11Identified LTI modelsIdentified Nonlinear models1-12Nonlinear model structures1-13Recommended Model Estimation Sequence1-14Supported Models for Time- and Frequency-DomainData,,,,,,,1-16Supported Models for Time-Domain Data1-16Supported Models for Frequency-Domain Data1-17See also1-18Supported Continuous-and Discrete-Time Models1-19Model estimation commands1-21Creating Model Structures at the command Line ... 1-22about system Identification Toolbox Model Objects ... 1-22When to Construct a Model Structure Independently ofEstimation1-23Commands for Constructing Model Structures1-24Model Properties1-25See als1-27Modeling Multiple-Output Systems ......... 1-28About Modeling multiple-Output Systems1-28Modeling Multiple Outputs Directly1-29Modeling multiple outputs as a Combination ofSingle-Output Models.......1-29Improving Multiple-Output Estimation Results byWeighing Outputs During Estimation ....... 1-30Identified linear Time-Invariant models1-32IDLTI Models1-32Configuration of the Structure of Measured and Noise oRepresentation of the Measured and noise Components foVarious model Types1-33Components ....1-35Imposing Constraints on the Values of ModeParameters1-37Estimation of Linear models1-8Data Import and Processing2「Supported Data ...2-3Ways to Obtain Identification DataWays to Prepare Data for System Identification ... 2-6Requirements on Data SamplingRepresenting Data in MATLAB Workspace·····Time-Domain Data Representation2-9Time-Series Data Representation2-10ContentsFrequency-Domain Data Representation ....... 2-11Importing Data into the Gui2-17Types of Data You Can import into the GUi2-17Importing time-Domain Data into the GUI2-18Importing Frequency-Domain Data into the GUI2-22Importing Data Objects into the GUI ......... 2-30Specifying the data sampling interval2-34Specifying estimation and validation Data2-35Preping data Using Quick StartCreating Data Sets from a Subset of Signal Channelo2-362-37Creating multiexperiment Data Sets in the gUi2-39Managing data in the gui ............. 2-46Representing Time- and Frequency-Domain Data Usingiddata object2-55iddata constructor2-55iddata Properties.........2-58Creating Multiexperiment Data at the Command Line .. 2-61Select Data Channels, I/O Data and Experiments in iddataObjects2-63Increasing Number of Channels or Data Points of iddataObjects2-67Managing iddata Objects2-69Representing Frequency-Response Data Using idfrdObiec2-76idfrd Constructor2-76idfrd Properties2-77Select I/o Channels and Data in idfrd Objects ..... 2-79Adding Input or Output Channels in idfrd Objects2-80Managing idfrd Objects2-83Operations That Create idfrd Objects2-83Analyzing Data quality2-85Is your data ready for modeling?2-85Plotting Data in the guI Versus at the command line2-86How to plot data in the gui2-86How to plot data at the command line2-92How to Analyze Data Using the advice Command2-94Selecting Subsets of Data2-96IXWhy Select Subsets of Data?2-96Extract Subsets of Data Using the GUI2-97Extract Subsets of data at the Command Line2-99Handling Missing Data and outliers2-100Handling missing data2-100Handling outliers2-101Extract and Model Specific Data Segments2-102See also2-103Handling offsets and Trends in Data2-104When to detrend data2-104Alternatives for Detrending Data in GUi or at theCommand-Line2-105Next Steps After detrending2-107How to Detrend Data Using the Gui2-108How to detrend data at the Command line2-109Detrending Steady-State Dat109cending transient Dat2-109See also2-110Resampling Data2-111What Is resampling?...,,.,,,,,,,,,,,.2-111Resampling data without Aliasing Effects2-112See also2-116Resampling data Using the GUi.,,,,2-117Resampling Data at the Command line2-118Filtering Data2-120Supported Filters2-120Choosing to Prefilter Your Data2-120See also2-121How to Filter Data Using the gui2-122Filtering Time-Domain Data in the GuI........ 2-122Content
    2020-12-11下载
    积分:1
  • MATLAB excellink
    MATLAB与EXCEL的交互使用,很有用!
    2020-12-04下载
    积分:1
  • 车牌识别系统(opencv版)
    相比于其他的车牌识别系统,EasyPR有如下特点:它基于openCV这个开源库,这意味着所有它的代码都可以轻易的获取。它能够识别中文,例如车牌为苏EUK722的图片,它可以准确地输出std:string类型的"苏EUK722"的结果。它的识别率较高。目前情况下,字符识别已经可以达到90%以上的精度。  系统还提供全套的训练数据提供(包括车牌检测的近500个车牌和字符识别的4000多个字符)
    2021-05-06下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载