登录
首页 » Others » SVPWM算法详解_已标注重点_

SVPWM算法详解_已标注重点_

于 2020-12-06 发布
0 344
下载积分: 1 下载次数: 4

代码说明:

详细的讲解了SVPWM的过程,及其仿真,很适合初学者或(37)即磁链空间矢量可以等效为电压空间矢量的积分,如果能够控制电压空间矢量的轨迹为如式(3.4)所示的圆形矢量,那么磁链空间矢量的轨迹也为圆形。这样,电动机旋转磁场的轨迹问题就可以转化为电压空间矢量的运动轨迹问题。进一步分析,由式(3.3)(3.5)(3.7)可以得到公式(3.8)∫-+yy(38)对电压积分,利用等式两边相等的原则有(39)其中,v为电机磁链的幅值,即为理想磁链圆的半径。y当供电电源保持压频比不变时,磁链圆半径v是固定的。在 SVPWM控制技术中,是取以y为半径的磁链圆为基准圆的。32逆变器电压的输出模式图32给出了电压源型PWM逆变器—异步电动机示意图14。昇步电动机定子绕组YY图3.2PWM逆变器电路(1~6为GBT)对于180°导电型的逆变器来说,三个桥臂的六个开关器件共可以形成8种开关模式。用分别标记三个桥臂的状态,规定当上桥臂器件导通时桥臂状态为1,下桥臂导通时桥臂状态为0,这样逆变器的八种开关模式对应八个电压空间矢量,其中为直流侧电压在逆变器的八种开关模式中,有六种开关模式对应非零电压空间矢量,矢量的幅值为一;有两种开关模式对应的电压矢量幅值为零,称为零矢量。当零矢量作用于电机时不形成磁链矢量;而当非零矢量作用于电机时,会在电机中形成相应的磁链矢量。对于每一个电压空间矢量,可由图32求出各相的电压值,再将各相的电压值代入式(3.3),可以求得电压空间矢量的位置。下面以开关状态)=(、0、0)为例,即开关导通,其余关断。逆变电路的形式可以变为B相和C相并连后再和A相串连的形式,易得将其数值代入式(33),可得采用同样的方法可以得到如表31所示的逆变器空间电压矢量。表31逆变器的不同开关状态对应的空间矢量表相电压矢量表达式定子电压开关状态(Us大小为空间矢量A相B相C相0000000101001110010111100由于 SVPWM控制的是逆变器的开关状态,在实际分析逆变器一电动机系统时,可以通过分析逆变器输出的电压空间矢量来分析电机定子电压的空间矢量,下面给出证明。设逆变器输出的三相电压为、,由图3.2可求出加到电机定子上的相电压为(310)其中,为电机定子绕组星接时中点0相对于逆变器直流侧点的电位。电机定子电压空间矢量为(311)而由三角函数运算知++因此,逆变器输出的电压空间矢量为(312)由式(3.12)可知,在PWM逆变器一电动机系统中,对电机定子电压空间矢量的分析可以转化为对逆变器输出电压空间矢量的分析。这时,在求解表3.1时,可以直接利用逆变器输出的电压合成得到,即A,B,C三相输出电压值只有一和-—两个值。当逆变器输出某一电压空间矢量时,电机的磁链空间矢量可表示为y =y3.13)其中,W为初始磁链空间矢量;△为的作用时间。当为某一非零电压矢量时,磁链空间矢量y从初始位置出发,沿对应的电压空间矢量方向,以为半径进行旋转运动,当为一零电压矢量时,W=y,磁链空间矢量的运动受到抑制。因此合理地选择六个非零矢量的施加次序和作用时间,可使磁链空间矢量顺时针或逆时针旋转形成一定形状的磁链轨迹。在电机控制当中尽量使磁链轨迹逼近正多边形或圆形。同时,在两个非零矢量之间按照一定的原则,比如开关次数最少,插入一个或多个零矢量并合理选择零矢量的作用时间,就能调节ψ的运动速度。33SWPM的具体实现方法在实际应用中,应当利用 SVPWM自身的特点找到控制规律,避开复杂的数学在线运算,从而较为简单的实现开关控制,本节将给出实现 SVPWM的具体方法。根据3.2节中给出的不同开关状态组合可以得到如图33的电压空间矢量图C图3.3 SVPWM矢量、扇区图通常在矢量控制的系统当中,根据控制策略,进行适当的巫标变换,可以给出两相静止坐标系即(a,B)坐标系电压空间矢量的分量,g,这时就可以进行 SVPWM的控制,具体要做以下三部分的工作如何选择电压矢量。2.如何确定每个电压矢量作用的时间。3.确定每个电压矢量的作用顺序3.3.1电压空间矢量的空间位置这里需要引入扇区的概念,将整个平面分为六个扇区。如图3.3所示,每个扇区包含两个基本矢量,落在某个扇区的电压空间矢量将由扇区边界的两个基本电压空间矢量进行合成。在确定扇区时,引入三个决策变量A,B,C。根据给出的待合成的空间矢量的两个分量,p来决定A,B,C的取值,有以下关系式所在扇区的位置为当N取不同的值对应的扇区位置如图3.3所示,这样给定一个空间电压矢量就可以确定其所在的扇区。33.2电压空间矢量的合成扇区确定之后,就可以利用扇区边界上的两个基本矢量合成所需的矢量在合成过程中应当使得两个基本矢量的合成效果接近于期望矢量的效果。于是采用伏秒平衡的原则,以图3.3所示的第Ⅲ扇区为例,以a尸轴为基准,将两个基本矢量向aB轴上投影,应当有轴:=||+尸轴其中,为对应电压矢量作用的时间(=),为采样周期,通常为PW的调制周期。且|=||=-。求解上面两式可以得到这两个基本矢量的作用时间如式3.14(314)通过上面的方法即可以确定基本矢量的作用时间,当需要合成的矢量位于各个不同的扇区时都存在如上的运算。通过对每个扇区基本矢量动作时间的求解不难发现它们都是一些基本时间的组合。所以给出几个基本的时间变量x,Y,Z。定义√(315)通过计算可以得到在每个扇区内的基本矢量动作时间,(由于五段和七段式的实现方法不同,所以这里没有考虑矢量的动作顺序,仅按照逆时针方向)。设每个刷区的两个基本矢量动作的时间为于是可以得到矢量动作时间表3,2表3.2的对应关系表扇区ⅣV在实际的应用中当给定的电压值太大时会出现过调制的情况,即+>。此情况出现时,还要对上述计算出来的电压矢量的作用时间进行调整,具体方法如式3.16所示。(316)即为调整后的动作时间。在一个P啊M周期内除了非零电压矢量的作用,还要有零电压矢量的作用,零电压矢量包括对于这两个矢量的作用时间,以及开关的动作顺序,取决于采用的SPwM是五段式还是七段式,3.3节将对这两种PWM形式进行详细的介绍3.4 SVPWM的硬件实现和软件实现TI公司的TM320LF2407A系列的DSP内部有硬件来实现 SVPWM,由于每个PWM周期被分为五段,因此也被称为五段式的 SVPWM。在每个PWM调制周期内,开关状态有五种,且关于周期中心对称。而七段式的SvPM在每个PWM调制周期内有七种开关状态,需要运用软件进行实现,因此也被称为 SVPWM的软件实现。需要注意的是,无论哪种方法,所遵循的基本原则是开关动作次数最少,每个开关在一个周期内最多动作两次。3.4.1五段式 SVPWM对于五段式的 SVPWM,只在PMM周期的中间插入零矢量,具体采用哪一个由硬件根据旋转方向和开关动作次数最少的原则自行决定。例如在第Ⅲ扇区内,如果旋转方向为逆时针时针,则先动作,后动作以此类推,动作时间可以直接采用表3.2中的数据即可,然后选择零矢量(硬件决定)即可使开关次数最少。对于五段式PWM而言,零矢量作用的时间可以表示为:根据上述的配置原则,在每个扇区内开关动作的示意图如图34所示202ⅣV/1Ⅵ图34每个扇区内的开关动作示意图每个TMS320LF2407A的事件管理器EV模块都具有十分简化的电压空间矢量PWM波形产生的硬件电路。编程时只需进行如下的配置2●设置 ACTRX寄存器用来定义比较输出引脚的输出方式,决定高电平还是低电平有效,正反转,所在扇区等。●设置COMC0Nx寄存器来使能比较操作和空间矢量PWM方式,并且把 CMPRX的重装条件设置为下溢●将通用定时器1或2,4或5设置成连续增/诚计数模式,并启动定时器。然后给据在两相静止(a6)坐标系下输入到电机的电压空间矢量,分解为,确定如下的参数●所期望的矢量所在的扇区。根据 SVPWM的调制周期计算出两个基本的空间矢量和零矢量作用的时间

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • stm32驱动oled,菜单界面序.汉字,图片显示
    stm32驱动oled,SPI协议,兼容各种oled,按键切换屏幕,有菜单选择功能,同时还可以显示汉字和图片,oled尺寸为128*64
    2021-05-07下载
    积分:1
  • 基于PCA算法实现人脸识别(完整代码文件,附操作说明、演示视频)
    1、利用MATLAB的GUI完成系统的编程及系统界面2、基于PCA算法实现人脸识别;读取人脸数据库;主成分分析法降维并去除数据之间的相关性;数据规格化;SVM训练(选取径向基和函数);读取测试数据、降维、规格化;用步骤4产生的分类函数进行分类(多分类问题,采用一对一投票策略,归位得票最多的一类);输出匹配度最高的一个
    2020-12-06下载
    积分:1
  • DSP28335开发板核心板原理图、手册、代码与教
    【实例简介】DSP28335开发板核心板原理图、手册、代码与教程, 全部都是可以直接运行的。
    2021-11-15 00:31:49下载
    积分:1
  • 神经网络模型预测控制器
    神经网络模型预测控制器
    2020-12-11下载
    积分:1
  • 相机标定 Tsai方法
    【实例简介】相机标定,tsai方法源码,做pets的可能会需要,我也是没钱才共享,不好意思,分多的给点
    2021-11-18 00:32:44下载
    积分:1
  • 粒子滤波算法及其应用
    本书系统介绍粒子滤波算法的基本原理和关键技术,针对标准粒子滤波算法存在的粒子退化、计算量大的缺点介绍了多种改进的粒子滤波算法,包括基于重要性密度函数选择的粒子滤波算法、基于重采样技术的粒子滤波算法、基于智能优化思想的粒子滤波算法、自适应粒子滤波算法、流形粒子滤波算法等,并将粒子滤波算法应用于机动目标跟踪、语音增强、传感器故障诊断、人脸跟踪等领域,最后探讨了粒子滤波算法的硬件实现问题,给出了基于DSP和FPCA的粒子滤波算法实现方法。内容简介本书系统介绍粒子滤波算法的基本原理和关键技术,针对标准粒子滤波算法存在的粒子退化、计算量大的缺点介绍了多种改进的粒子滤波算法,包括基于重要性密度函数选择的粒子滤波算法、基于重采样技术的粒子滤波算法、基于智能优化思想的粒子滤波算法、自适应粒子滤波算法流形粒子滤波算法等,并将粒子滤波算法应用于机动目标跟踪、语音增强、传感器故障诊断、人脸跟踪等领域最后探讨了粒子滤波算法的硬件实现问题,给出了基于DsP和FPGA的粒子滤波算法实现方法。本书可供高等院校电子信息、自动化、计算机应用、应用数学等有关专业高年级本科生和研究生,以及从事控制科学与工程、信号与信息处理领域的工程技术人员和研究人员参考阅读。图书在版编目(CIP)数据粒子滤波算法及其应用/朱志宇著.一北京:科学出版社,2010.6ISBN978-7-03-027611-7I.①粒…Ⅱ.①朱…Ⅲ.①非线性控制系统Ⅳ,①O231.2中国版本图书馆CIP数据核字(2010)第08821号责任編辑:孙芳王志欣/责任校对:陈玉责任印制;赵博/封面设计:耕者设计工作室學☆出版北京东黄城根北街|6号邮攻编码:100717http://www.sciencep400酉卹剩厂印刷科学出版社发行各地新华书店经销2010年6月第版开本;B5(720×10002010年6月第一次印刷印张:163/4印数:1-3000字数:324000定价:48.00元(如有印装质量问题,我社负责调换)前言粒子滤波又称序贯蒙特卡罗方法,是一种基于蒙特卡罗方法和递推贝叶斯估计的统计滤波方法,它依据大数定理,采用蒙特卡罗方法来求解贝叶斯估计中的积分运算。粒子滤波算法首先依据系统状态向量的经验条件分布在状态空间产生组随机样本的集合,然后根据观测量不断地调整粒子的权重和位置,通过调整后粒子的信息修正最初的经验条件分布。当样本容量很大时,这种蒙特卡罗描述就近似于状态变量真实的后验概率密度函数。粒子滤波适用于任何能用状态空间模型表示的非高斯背景的非线性随机系统,它完全突破了传统的 Kalman滤波理论框架,对系统的过程噪声和量测噪声没有任何限制,可适用于任何非线性系统,精度可以逼近最优估计,是一种很有效的非线性滤波技术,可广泛应用于数字通信、金融领域数据分析、统计学、图像处理、计算机视觉、自适应估计、语音信号处理、机器学习等方面。粒子滤波算法是现代信号与信息处理学科和统计模拟理论之间的交叉学科,其研究有着重要的理论意义和现实价值,随着计算机性能的迅速提高,这方法日益受到人们的关注。近年来,从解决粒子退化和粒子多样性丧失、提高算法实时性和鲁棒性、降低计算复杂度等角度考虑,国内外学者广泛开展了粒子滤波研究。本书系统总结了近年来粒子滤波的研究成果,针对粒子滤波算法的缺点提出了若干种改进算法,包括基于微分流形的粒子滤波算法、基于人工鱼群的粒子滤波算法、基于神经网络的粒子滤波算法、自适应粒子滤波算法等;广泛探讨了粒子滤波算法的各种应用,给出了粒子滤波算法的硬件实现方法在本书编撰过程中,作者研读了大量文献,参考融合了国内外专家、学者们在相关领域的硏究成果,在此,对他们表示衷心谢意!王建华教授、姜长生教授、张冰教授对本书的编写工作提供了很多宝贵意见,杨官校、李冀、皇丰辉、刘炜、薄超等同学编制了书中的仿真程序,赵成、苏岭东、姜威威等同学绘制了书中的部分图表。在此,向参与和关心本书编写工作的各位同事和同学表示真诚的感谢本书的出版得到了江苏省高校自然科学基金(项目编号:06KJB510030)和中国船舶行业预研基金(项目编号:3.1.5)的资助。由于作者学术水平有限,书中难免存在不妥之处,殷切期望广大读者批评指正。作者2010年3月目录前言第一篇粒子滤波算法第1章绪论1粒子滤波的发展和应用……··d·············.41.2粒子滤波的缺点和现有的解决方法4第2章 Kalman滤波理论2.1标准 Kalman滤波算法R-y滤波器102.3EKF滤波算法24 MVEKF算法142.5UKF算法D春看曲。·鲁b·····。音·看自。··非自b。非…………15第3章从贝叶斯理论到粒子滤波…193.1动态空间模型3.2贝叶斯估计理论203.3蒙特卡罗积分………·.·日···↓..··":·.·“.···香。·。着非●自·223.4序贯蒙特卡罗信号处理2435粒子滤波27第4章基于重要密度函数选择的改进粒子滤波算法334.1GHPF…………………………………………………334.2 EKPF354.3 UPF374.4 IMMPF算法…………384.5二阶中心差分粒子滤波…………404.6基于 Stiefel流形的粒子滤波器研究434.7混合退火粒子滤波器研究45IV粒子滤波算法及其应用第5章基于重采样技术的改进粒子滤波算法最自自自485.1重要性重采样粒子滤波器………485.2基于MCMC的粒子滤波……495、3AVPF……………525.4 RPF∴…545.5核K-粒子滤波算法(KPF)5.6基于权值选择的粒子滤波算法…575.7线性优化重采样粒子滤波算法5.8基于 Stiefel流形和权值优选的粒子滤波器( SM-WSPF)研究605.9基于 Stiefel流形和线性优化重采样的粒子滤波器( SM-LOCR-PF)研究615.10其他常用的重采样方法621仿真分析第6章基于智能优化思想的粒子滤波算法6.1GPF算法…………………736.2 PSO-PF算法p·普·日···曹·。昏鲁··甲啊·。··中日中··串自自·事6.3 AFSA-PF算法6.4AIPF算法鲁音·鲁甲··鲁曹·自·即………906.5仿真分析97第7章基于神经网络的粒子滤波算法……1027.1基于神经网络的重要性权值调整粒子滤波( NNWA-PF)算法…1027.2基于神经网络的重要性样本调整粒子滤波( NNISA-PF)算法1057.3仿真分析……109第8章APF算法音·自·普自自自非●·P,自自··自··非鲁自单最自自音自自自·4非鲁备自音。非·鲁音。··音鲁1148.1似然分布自适应调整1148.2样本数APF8.3改进APF…1188.4APF的仿真分析…119第9章其他粒子滤波算法1269.1免重采样粒子滤波1269.2MPF……………………………………………………132目录9.3分布式粒子滤波134第二篇粒子滤波算法的应用第10章粒子滤波算法在机动目标跟踪中的应用……1390.1基于贝叶斯理论的目标跟踪技术…………………13910.2机动目标的运动模型……14010.3多目标跟踪中的联合概率数据关联方法14210.4非线性、非高斯条件(闪烁噪声)下的机动目标跟踪14510.5基于粒子滤波和JPDA的多目标跟踪数据关联算法10.6仿真实验…150第11章粒子滤波应用于语音信号增强………16111.1语音增强技术………………………………………16111.2TVAR模型11.3基于GPF的语音增强算法11.4语音信号增强仿真实验…I68第12章粒子滤波应用于传感器故障诊断e早看值·看…………17212.1故障诊断的方法…17212.2传感器故障诊断的基本原理…17412.3应用粒子滤波进行故障诊断鲁番“·.····.;·4···17712.4仿真实例分析180第13章粒子滤波算法在人脸跟踪中的应用19013.1人脸跟踪介绍…………………19013.2跟踪算法相关理论基础·19313.3基于直方图的坞值偏移人脸跟踪算法·19613.4基于直方图的粒子滤波人脸跟踪算法20113.5基于椭圆拟合的人脸跟踪算法…20613.6基于流形的人脸跟踪算法p音直最看·鲁鲁··息·翟·唱备售暴4鲁售聊鲁20713.7人脸跟踪仿真…………鲁电210第14章粒子滤波在倒立摆控制系统中的应用21614.1引言21614.2倒立摆控制系统模型216粒子滤波算法及其应用14.3基于神经网络的倒立摆控制系统研究∴21914.4粒子滤波优化神经网络倒立摆控制仿真…22第15章基于DSP实现的粒子滤波算法……22515.1FBPF算法鲁t·息鲁鲁∴22515.2基于硬件实现的改进FBPF算法…22715.3实现改进FBPF算法的DSP···→·········:·..··.·;····..·········22815.4改进FBPF算法DSP实现的软件环境…23015.5改进FBPF算法的软件仿真与DSP实现…23115.6基于改进FBPF算法的GPS导航系统设计237第16章基于FPGA的粒子滤波算法实现∴24116.1基于FPGA的改进FBPF算法的总体设计∴…241l16.2FPGA简介…24216.3改进FBPF算法的软件仿真与FPGA实现245参考文献…:a4a....············.··.··········253第一箭粒子滤波算法
    2020-06-21下载
    积分:1
  • 数据挖掘经典论文-IBM购物篮关联分析论文.pdf
    【实例简介】数据挖掘经典论文-IBM购物篮关联分析论文 购物篮问题原始分析学术论文,很有珍藏价值。 数据挖掘必读论文
    2021-12-02 00:36:14下载
    积分:1
  • 遗传算法模糊控制
    遗传算法模糊控制器最优设计,内含各接口函数的详细代码,已在MATLAB成功运行,对初学者有较好的借鉴建议
    2020-12-04下载
    积分:1
  • 完美的光伏发电模型 mppt都有 matlab simulink
    我觉得它值十分,本论坛独此一份,可以完美运行,不能运行的注意你matlab的版本太低
    2020-11-28下载
    积分:1
  • STM32 SD卡 记录传感器数据
    STM32 SD卡 记录传感器数据
    2020-11-01下载
    积分:1
  • 696518资源总数
  • 106235会员总数
  • 12今日下载