>rsgenpoly(15,9)得到ans=GF(24)array.Primitivepolynomial=D4+D+1(19decimal)有读者来信问:我要做一个(158的RS编码,在MATLAB中输入命令rsgenpoly(158,128),结果MAB报错Errorusing=-rsgenpolyNmustequal2m-1forsomeintegerm这里做一下解释我们S编码时普先要根据码长选取mλ选择原则是2若码长为6那么我们可以选择n=8,rsgenpey命令的第少个参数必须为2"-1,第二个参数司以随便选择只要小于2”-1就形了在此给出m∈(2,16)的所有本原多项式(m=2)P[m+1]={1,1,1}/米1+x+x3*/P[m+1]-{1,1,0,1}/米1+x+x4*/P[m11]={1,1,0,0,1}/米1+x2+x5*/P|m+1={1,0,1,0,0,1};ZhengzhouOrioleXindaElectronicInformationCc.,Ltd(m=6)/米1+x+x6*/P[m+1]={1,1,0,0,0,0,1}7)/来1+x3+x7*P[m+1]={1,0,0,1,0,0,0,1}(m=8)/米14x2+x31x4+x8*/P[m+1]-{1,0,1,1,1,0,0,0,1/*1+x4+x9半P[m1]={1,0,0,0,1,0,0,0,(m=10)/1+x3+x10*/P|m+1={1,0,0,1,0,0,0,0,/*1+x2+x11P[m+1]={1,0,0,0,0,0,0,1}(m=12)/*1+x+x4+x6+x12P[m+1]-{1,1,0,0,、1,0,0,(m=13)/*1+x+x^3+x4+x^13*/P[m+1]={1,1,0,1,1,0,0,00,0,1};(m=14)/*1+x+x6+x10+x14来P[m+1]={1,1,0,0,0,0,1,0,0,0,1,0,0,0,1}(m=15)/米14x+x15*/P[m+1]={1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1};(m=16)/*1+x+x3+x12+x16*/P[m+1]={1,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1};ZhengzhouOrioleXindaElectronicInformationCc.,Ltd二、线性分组码的一些基本概念1、线性分组码一般用(n,)或(n,k,d)表示n为码长,k为信息码元的数目,n-k为监督码元的数目。d表示码元距离。定义:两个码组上对应位置上数字不同的个数称为码组的距离。发送的码字C=(1,C2C3,…C接收的矢量r=(,2,信道错误图样:e=c+r例如c=(1,1,0,0,0)(1,0,001)e=(1+1,1+0,0+0,0+0,0+1)(0,1,0,0,1)从而可以看出从左端起第2位和第5位是错误的2、校验矩阵概念码长为n,信息数为k,监督数为r。这样的一组码形式为:m:m2,P,P2Pm表示第个信息码,P表示第j个校验码各个校验码可从下列线性方程组求得hm+h2m2+…+n+1B1+012+0h2m1+2m2+…+h2m+0p1p20hmn+h,2m2+…+hm+O+0+…+1p,=0式中h;是常数校验方程组可写成校验矩阵100h21h2…,h2k010h000该矩阵具有r行和n列故式(1-1)可以写成c=0或c=08ZhengzhouOrioleXindaElectronicInformationCc.,LtdH矩阵称为[n,k,r码的校验矩阵。发送矢量为C接收矢量为F若rH≠0则说明接收到的码有错误。设错误图样为e则可写成以下关系式r=c+e为了纠错必须知道那些位上存在错误。这可由校正子(又称伴随式)s来确定s=rH=cH+eh=eh译码器的主要任务就是如何从中得到最像e的错误图样e从而译出c=r-e设第讠个是错误的因此e=(00..0第个有错误s=rH=(00…0、100000)00计算出的矢量示出i是出错误的位置。3、生成矩阵概念生成矩阵G,它是一个k行,n列的矩阵若已知信息组m,通过生存矩阵可求得相应的码字。c=mxG(m是k个信息元组成的信息组)这个应该比较容易理解,在此就不做过多解释。、RS码的一些重要性质1、RS码生成多项式:码长n=2”-1,监督元数目r=n-k=2t,能纠正t个错误。ZhengzhouOrioleXindaElectronicInformationCc.,Ltd定义:在(n,k,d)的RS码中,存在唯一的n-k次多项式g(x),使得每一个码多项式c(x)都是g(x)的倍式。g(x)称为n,k,d]RS码的生成多项式一般情况下g(x)=(x-a)(x-a2)…(x-a2)2、定理:在GF(2m)中,每个非0元素(1,a,a2…a22)均满足x2=1,反之x21-1=0的根必在GF(2")中。所以x-1=(x-a)(x-a)x3、RS码的校验多项式由于生成多项式g(x)是x-1的因式g(rh(g(x)为n-k次多项式,则h(x)为k次多项式,k3x+g)hx+…+x+4)由右式可以看出x"1,x2,x的系数均等于0即gg0010h1+g1bo=0g0h+g1h11+…+8nkh2(2k)=0∴.+n-kk-10n-kk式中g0+81h1+…+8nkh1(n=k)(表示X的系数10-IMDN开发者社群-imdn.cn">
>rsgenpoly(15,9)得到ans=GF(24)array.Primitivepolynomial=D4+D+1(19decimal)有读者来信问:我要做一个(158的RS编码,在MATLAB中输入命令rsgenpoly(158,128),结果MAB报错Errorusing=-rsgenpolyNmustequal2m-1forsomeintegerm这里做一下解释我们S编码时普先要根据码长选取mλ选择原则是2若码长为6那么我们可以选择n=8,rsgenpey命令的第少个参数必须为2"-1,第二个参数司以随便选择只要小于2”-1就形了在此给出m∈(2,16)的所有本原多项式(m=2)P[m+1]={1,1,1}/米1+x+x3*/P[m+1]-{1,1,0,1}/米1+x+x4*/P[m11]={1,1,0,0,1}/米1+x2+x5*/P|m+1={1,0,1,0,0,1};ZhengzhouOrioleXindaElectronicInformationCc.,Ltd(m=6)/米1+x+x6*/P[m+1]={1,1,0,0,0,0,1}7)/来1+x3+x7*P[m+1]={1,0,0,1,0,0,0,1}(m=8)/米14x2+x31x4+x8*/P[m+1]-{1,0,1,1,1,0,0,0,1/*1+x4+x9半P[m1]={1,0,0,0,1,0,0,0,(m=10)/1+x3+x10*/P|m+1={1,0,0,1,0,0,0,0,/*1+x2+x11P[m+1]={1,0,0,0,0,0,0,1}(m=12)/*1+x+x4+x6+x12P[m+1]-{1,1,0,0,、1,0,0,(m=13)/*1+x+x^3+x4+x^13*/P[m+1]={1,1,0,1,1,0,0,00,0,1};(m=14)/*1+x+x6+x10+x14来P[m+1]={1,1,0,0,0,0,1,0,0,0,1,0,0,0,1}(m=15)/米14x+x15*/P[m+1]={1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1};(m=16)/*1+x+x3+x12+x16*/P[m+1]={1,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1};ZhengzhouOrioleXindaElectronicInformationCc.,Ltd二、线性分组码的一些基本概念1、线性分组码一般用(n,)或(n,k,d)表示n为码长,k为信息码元的数目,n-k为监督码元的数目。d表示码元距离。定义:两个码组上对应位置上数字不同的个数称为码组的距离。发送的码字C=(1,C2C3,…C接收的矢量r=(,2,信道错误图样:e=c+r例如c=(1,1,0,0,0)(1,0,001)e=(1+1,1+0,0+0,0+0,0+1)(0,1,0,0,1)从而可以看出从左端起第2位和第5位是错误的2、校验矩阵概念码长为n,信息数为k,监督数为r。这样的一组码形式为:m:m2,P,P2Pm表示第个信息码,P表示第j个校验码各个校验码可从下列线性方程组求得hm+h2m2+…+n+1B1+012+0h2m1+2m2+…+h2m+0p1p20hmn+h,2m2+…+hm+O+0+…+1p,=0式中h;是常数校验方程组可写成校验矩阵100h21h2…,h2k010h000该矩阵具有r行和n列故式(1-1)可以写成c=0或c=08ZhengzhouOrioleXindaElectronicInformationCc.,LtdH矩阵称为[n,k,r码的校验矩阵。发送矢量为C接收矢量为F若rH≠0则说明接收到的码有错误。设错误图样为e则可写成以下关系式r=c+e为了纠错必须知道那些位上存在错误。这可由校正子(又称伴随式)s来确定s=rH=cH+eh=eh译码器的主要任务就是如何从中得到最像e的错误图样e从而译出c=r-e设第讠个是错误的因此e=(00..0第个有错误s=rH=(00…0、100000)00计算出的矢量示出i是出错误的位置。3、生成矩阵概念生成矩阵G,它是一个k行,n列的矩阵若已知信息组m,通过生存矩阵可求得相应的码字。c=mxG(m是k个信息元组成的信息组)这个应该比较容易理解,在此就不做过多解释。、RS码的一些重要性质1、RS码生成多项式:码长n=2”-1,监督元数目r=n-k=2t,能纠正t个错误。ZhengzhouOrioleXindaElectronicInformationCc.,Ltd定义:在(n,k,d)的RS码中,存在唯一的n-k次多项式g(x),使得每一个码多项式c(x)都是g(x)的倍式。g(x)称为n,k,d]RS码的生成多项式一般情况下g(x)=(x-a)(x-a2)…(x-a2)2、定理:在GF(2m)中,每个非0元素(1,a,a2…a22)均满足x2=1,反之x21-1=0的根必在GF(2")中。所以x-1=(x-a)(x-a)x3、RS码的校验多项式由于生成多项式g(x)是x-1的因式g(rh(g(x)为n-k次多项式,则h(x)为k次多项式,k3x+g)hx+…+x+4)由右式可以看出x"1,x2,x的系数均等于0即gg0010h1+g1bo=0g0h+g1h11+…+8nkh2(2k)=0∴.+n-kk-10n-kk式中g0+81h1+…+8nkh1(n=k)(表示X的系数10 - IMDN开发者社群-imdn.cn">
于 2020-12-08 发布
0 325
RS纠错编码原理及其实现方法。Zhengzhou Oriole Xinda Electronic Information Cc., Ltd前言随着越来越多的系统采用数字技术来实现,纠错编码技术也得到了越来越广泛的应用。RS码既可以纠正随机错误,又可以纠正突发错误,具有很强的纠错能力,在通信系统中应用广泛。近些年来,随着软件无线电技术的发展,RS编码、译码一般都在通用的硬件平台上实现。通常采用基于FPGA的ⅦHDL编码硬件实现,或者在DSP、单片机上用C和汇编编程软件实现。RS纠错编码涉及的领域很广,特别是设计到很多数学知识。这对那些对数学不太感冒的工程技术人员来书是个不小的挑战。尽管讲RS编码的书籍很多但是那些书都是采用循序渐进,逐步引人的方式从汉明码到循环码,从循环码到BCH码,BCH码再引入悶S码。对亍工程技术人员他们需要的是简明扼要的讲解,和详细的实现方法。本人写这篇文章的宗旨就是尽量最简单的语言最简短的篇幅来讲RS纠错编码原理,把重点来放在实现方法上。为了便于读者仿真,本文采样MLAB程序实现,程序尽量符合硬件C语言写法,读者经过简单修改即可应用到工程中去。本文读者对象本文是为那些初识瑙编码的学生、工程技术人员而写,并不适合做理论研究,如果你是纠错编码方面的学者、专家,那么本文并不适合你。由于作者水平有限,错误在所难免,恳请读者批评指正。不得更改陈文礼2008-01于郑州Zhengzhou Oriole Xinda Electronic Information Cc., Ltd必备的一些代数知识1、在纠错编码代数中,把以二进制数字表示的一个数据系列看成一个多项式。例如二进制数字序列1010111,可以表示成:M(x)=ax+a5x0+a5不5+a+4 TasK +ax+a,x+ank式中的x表示代码的位置,或某个二进制数位的位置,X前面的系数表示码的值。若a;是一位二进制代码,则取值是0或1。dM()称为信息代码多项式多项式次数称系数不为0的x的最高次数为多项式/(x)的次数,记为Of(x)2、域域在R编码理论中起着至关重要的作用。简单点说域GF(2)有2设2个符号[0,n,a2…22且具有以下性质域中的每个元素都可以用a",a,a2,om的和来表示。a←la为本原多项式p(x)的根。运算规则有:在纠错编码运算过程中,加减、乘和除的运算是在伽罗华域中进行。现以GF(2)域中运算为例:加法例:a+a=0010+0110101(模2加法相当于0005与011或减法运算与加法相同乘法例:a·a0=a(8+10)modl5除法例:cs/a0=a-2=a-2+5=a不理解没关系,下面的例子也许对你有帮助。例:mF=4,p(x)=x4+x+1求GF(2")的所有元素因为a为p(x)的根得到a4+a+1=0或a4=a+1(根据运算规则)Zhengzhou Oriole Xinda Electronic Information Cc., Ltd由此可以得到域的所有元素元素二进制对应十进制对应码值000000101000a+100l⊥0110a(a+1)=a+a(mod p(a))12a(a+a=a+a(mod p(a)1011a(a+l(modula))+a+1)10C(a+1=a+a(mod p(a )a(a23+a)a+I(mod p(a)1110a(a+a+D=aa+a(modp(a)tatI(mod p(a))11a(a3+a2+a+1)=a34a2+1(modp(a)1001a(a+a+1=a+l(mod p(a)a(a+1=l(mod(a))由此可以看岀本原多项式是求解域的全部元素的关键。读者也许会有这样的疑问我们如何得到p(x)呢?本原多城式p(x)的特性是2+得到的余式等于0O(X由于作者也是工程技术人员,具体怎么得到p(x),也没有深究过。Zhengzhou Oriole Xinda Electronic Information Cc., Ltd作者在设计RS编码时候都是根据 MATLAB指令rsgeηpoly来得到p(x)。其格式为 rsgenpoly(n,k)参数n为码长一般n=2"-1,k为信息码元个数。例如m4,码长n=15,信息码元长度为9GF(2)的本原多项式可以根据指令>>rsgenpoly(15, 9)得到ans= GF(2 4)array. Primitive polynomial =D 4+D+1 (19 decimal)有读者来信问:我要做一个(158的RS编码,在 MATLAB中输入命令 rsgenpoly(158,128),结果MAB报错Error using =- rsgenpolyN must equal 2m-1 for some integer m这里做一下解释我们S编码时普先要根据码长选取mλ选择原则是2若码长为6那么我们可以选择n=8, rsgenpey命令的第少个参数必须为2"-1,第二个参数司以随便选择只要小于2”-1就形了在此给出m∈(2,16)的所有本原多项式(m=2)P[m+1]={1,1,1}/米1+x+x3*/P[m+1]-{1,1,0,1}/米1+x+x4*/P[m11]={1,1,0,0,1}/米1+x2+x5*/P|m+1={1,0,1,0,0,1};Zhengzhou Oriole Xinda Electronic Information Cc., Ltd(m=6)/米1+x+x6*/P[m+1]={1,1,0,0,0,0,1}7)/来1+x3+x7*P[m+1]={1,0,0,1,0,0,0,1}(m=8)/米14x2+x31x4+x8*/P[m+1]-{1,0,1,1,1,0,0,0,1/*1+x4+x9半P[m1]={1,0,0,0,1,0,0,0,(m=10)/1+x3+x10*/P|m+1={1,0,0,1,0,0,0,0,/*1+x2+x11P[m+1]={1,0,0,0,0,0,0,1}(m=12)/*1+x+x4+x6+x12P[m+1]-{1,1,0,0,、1,0,0,(m=13)/*1+x+x^3+x4+x^13*/P[m+1]={1,1,0,1,1,0,0,00,0,1};(m=14)/*1+x+x6+x10+x14来P[m+1]={1,1,0,0,0,0,1,0,0,0,1,0,0,0,1}(m=15)/米14x+x15*/P[m+1]={1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1};(m=16)/*1+x+x3+x12+x16*/P[m+1]={1,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1};Zhengzhou Oriole Xinda Electronic Information Cc., Ltd二、线性分组码的一些基本概念1、线性分组码一般用(n,)或(n,k,d)表示n为码长,k为信息码元的数目,n-k为监督码元的数目。d表示码元距离。定义:两个码组上对应位置上数字不同的个数称为码组的距离。发送的码字C=(1,C2C3,…C接收的矢量r=(,2,信道错误图样:e=c+r例如c=(1,1,0,0,0)(1,0,001)e=(1+1,1+0,0+0,0+0,0+1)(0,1,0,0,1)从而可以看出从左端起第2位和第5位是错误的2、校验矩阵概念码长为n,信息数为k,监督数为r。这样的一组码形式为:m:m2,P,P2Pm表示第个信息码,P表示第j个校验码各个校验码可从下列线性方程组求得hm+h2m2+…+n+1B1+012+0h2m1+2m2+…+h2m+0p1p20hmn+h,2m2+…+hm+O+0+…+1p,=0式中h;是常数校验方程组可写成校验矩阵100h21h2…,h2k010h000该矩阵具有r行和n列故式(1-1)可以写成c=0或c=08Zhengzhou Oriole Xinda Electronic Information Cc., LtdH矩阵称为[n,k,r码的校验矩阵。发送矢量为C接收矢量为F若rH≠0则说明接收到的码有错误。设错误图样为e则可写成以下关系式r=c+e为了纠错必须知道那些位上存在错误。这可由校正子(又称伴随式)s来确定s=rH=cH +eh=eh译码器的主要任务就是如何从中得到最像e的错误图样e从而译出c=r-e设第讠个是错误的因此e=(00..0第个有错误s=rH=(00…0、100000)00计算出的矢量示出i是出错误的位置。3、生成矩阵概念生成矩阵G,它是一个k行,n列的矩阵若已知信息组m,通过生存矩阵可求得相应的码字。c=mxG(m是k个信息元组成的信息组)这个应该比较容易理解,在此就不做过多解释。、RS码的一些重要性质1、RS码生成多项式:码长n=2”-1,监督元数目r=n-k=2t,能纠正t个错误。Zhengzhou Oriole Xinda Electronic Information Cc., Ltd定义:在(n,k,d)的RS码中,存在唯一的n-k次多项式g(x),使得每一个码多项式c(x)都是g(x)的倍式。g(x)称为n,k,d]RS码的生成多项式一般情况下g(x)=(x-a)(x-a2)…(x-a2)2、定理:在GF(2m)中,每个非0元素(1,a,a2…a22)均满足x2=1,反之x21-1=0的根必在GF(2")中。所以x-1=(x-a)(x-a)x3、RS码的校验多项式由于生成多项式g(x)是x-1的因式g(rh(g(x)为n-k次多项式,则h(x)为k次多项式,k3x+g)hx+…+x+4)由右式可以看出x"1,x2,x的系数均等于0即gg0010h1+g1bo=0g0h+g1h11+…+8nkh2(2k)=0∴.+n-kk-10n-kk式中g0+81h1+…+8nkh1(n=k)(表示X的系数10
下载说明:请别用迅雷下载,失败请重下,重下不扣分!
-
易语言手机短信攻鸡机源代码,亲测可用
【实例简介】
- 2021-07-25 00:31:03下载
- 积分:1
-
VC++/Access仓库管理系统源代码.rar
【实例简介】摘要:VC/C++源码,数据库应用,仓库管理系统
VC++/Access仓库管理系统的源代码,此程序源码是VC++数据库系统开发实例导航中的一个随书实例,功能不太多,仅完成数据资料的添加和修改等,目的在于学习VC++操作Access数据库的技巧,源码爱好者提示:在调试运行程序之前,请将所附的数据库文件dms.mdb添加为数据源,并命名为DMS。
- 2021-12-08 00:36:58下载
- 积分:1
-
Tebo-ICT(腾博)
ICT ATE FCT测试必备强软,懂的进
- 2020-11-02下载
- 积分:1
-
通信IC设计
推荐一本很好的通信学习资料,本书将通信理论与电路设计融合在一起
- 2021-05-06下载
- 积分:1
-
基于人工神经网络的图像识别和分类
本文介绍了目前常用的几种基于神经网络的图像识别方法,根据图像识别的特点,提出了利用BP 网络、径向基函数两种神经网络图像识别模型,分别给出了两种模型的学习算法和具体应用技术。
- 2020-12-04下载
- 积分:1
-
卡尔曼滤波参数估计
这是用MAtlab编程实现的卡尔曼滤波参数估计,能修改参数,满足各自的要求。
- 2020-12-01下载
- 积分:1
-
概率论与数理统计浙江大学第五版电子教案
概率论与数理统计浙江大学第五版电子教案,和教材完全同步,考研可用!
- 2020-11-28下载
- 积分:1
-
MOPSO+例子
粒子群算法 约束 多目标 优化 matlab代码
- 2020-11-29下载
- 积分:1
-
STM32 ADF4351
基于stm32做的ADF4351锁相环模块,频率范围35M—4.4G,程序控制,有十分详细的寄存器操作注释,可做本振源,参加今年电子大赛的同学要注意了!
- 2020-12-05下载
- 积分:1
-
灰色预测模型资料和程序.rar
MFC语言编写的灰色预测模型EXCEL预测分析.doc多变量灰色预测模型算法的Matlab程序.pdf多变量灰色预测模型算法的Matlab程序.txt灰色模型代码GM(1,1)模型的改进与应用及其MATLAB实现.pdf关于GM(1,1)灰色模型MATLAB的程序.pdf用EXCEL实现灰色数列模型GM(1,1)的预测.pdf企业马尔可夫预测的Excel+VBA实现.pdf灰色模型GM(1,1)结合Excel实现药品销售预测.pdf基于 EXCEL 建立人口灰色预测模型的研究.pdfVBA编程轻松实现.pdf用Excel建立灰色数列预测模型的研究.pdf
- 2020-12-02下载
- 积分:1