登录
首页 » Others » Gardner 算法

Gardner 算法

于 2020-12-08 发布
0 685
下载积分: 1 下载次数: 11

代码说明:

Gardner算法,用于在通信过程中的时钟恢复-(+1)(-1)121=(+1)A(-2)1+一IC+223工(+1)(-1)(t-2)+12C1=I-j(-1)(1-2)11-J从而可得y(r)=∑cx(m-1)=C2xmx+2)+C-1x(m+1)+0(n)+Cix(m-1)22时钟误差检测在 Gardner算法中,每个符号仅需要两个采样点,一个在符号判决点附近,另一个在两个符号判决点中间附近,用连续个采样点来求定时误差,并且与载波相位偏差无关。计算公式可以表示为REx()x〔2.3环路滤波器及数控振荡器由时钟误差检测器得到到时钟误差必须绎环路滤波器滤去高频噪声,以减小定时误差抖动,并通过数控振荡器来控钊基点n和小数偏差u。环路滤波器系数K和κ2与相对环路等效噪声带宽B和咀尼系数S及鉴相器增益K有关。公式如下14B12Bk|1+4定时恢复环的内插滤波器由数控振荡器控制,它接收定时误差信号,给内插滤波器提供内插运算所需要的参数m和山,数控振荡器的时钟频率为1/T,其计算过程妇图3所示。n(one +1)寄存器几0:(2+17m2+(m2+)图3数控振荡器的计算过程数控振荡器(NO)是一个相位递减器,它的差分方程为:7(m)=[(m-1)-Wm-1)]mod-1md为模函数,只取余数部分,n(m)为第m个工作吋钟的NCO寄存器内容,W(m)为NO控制字,即相位递减器的步长,两者都是正小数。3仿真结果根据环路设计,我们进行了 Matlab仿真。仿真采用16QAM调制方式,采样时钟频率为80Kz,符号频率为20KHz,对环路滤波器参数的设置,其中的阻尼系数取经验值0.707,当k1取0.6,k2取0.003时,在信噪比为15邢B的情况下,环路的收敛效果比较好,图4、图5分别为定时误差和小数偏差的仿真「线。从仿頁结果可以看岀,用此环路实现的定时恢复,定时误差的收敛速度比较快,不到500个符号,环眳就能达到稳定,且收敛之后定时误差抖动比较小,系统稳定性较髙。且很重要的一点是,环路屮采用的定时淏差检测算法是 Gardner算法,此算法和载波相位冮相独立,定时误差不受载波的影响,这样定时恢复环路与载波同步在接收系统中勍可以独立工作,増强了系统灵活性。0.5图4定时误差的收敛曲线0.80.20.5u的收敛曲线图5小数偏差的仿真曲线

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • html旅游网页设计模板下载
    html旅游网页设计模板下载基于html+css设计,大气美观
    2020-12-12下载
    积分:1
  • 微机原理课设计报告01-----电子时钟
    微机原理课程设计报告01-----电子时钟微机原理课程设计报告01-----电子时钟微机原理课程设计报告01-----电子时钟
    2020-12-12下载
    积分:1
  • 基于curvelet变换的红外和可见光图像融合算法代码
    利用curvelet_toolbox开发的一个红外和可见光图像融合代码。
    2020-12-05下载
    积分:1
  • 水面无人艇局部危险避障算法研究 答辩PPT
    水面无人艇局部危险避障算法研究 答辩PPT-包含动画。将水面无人艇局部危险避障分为三层进行考虑:基于PSO的已知静态路径规划方法,基于PSO并融合海事规则的已知动态路径规划方法和基于滚动窗口的未知环境下的避障方法。前两层算法是基于环境先验知识的已知局部危险避障,第三层算法是基于传感器知识的未知局部危险避障。
    2020-05-30下载
    积分:1
  • Lectures on Stochastic Programming-Model
    这是一本关于随机规划比较全面的书!比较难,不太容易啃,但是读了之后收获很大。这是高清版的!To Julia, Benjamin, Daniel, Nalan, and Yael;to Tsonka Konstatin and Marekand to the memory of feliks, Maria, and dentcho2009/8/20pagContentsList of notationserace1 Stochastic Programming ModelsIntroduction1.2 Invento1.2.1The news vendor problem1.2.2Constraints12.3Multistage modelsMultiproduct assembl1.3.1Two-Stage Model1.3.2Chance Constrained ModeMultistage modelPortfolio selection131.4.1Static model14.2Multistage Portfolio selection14.3Decision rule211.5 Supply Chain Network Design22Exercises2 Two-Stage Problems272.1 Linear Two-Stage Problems2.1.1Basic pi272.1.2The Expected Recourse Cost for Discrete Distributions 302.1.3The Expected Recourse Cost for General Distributions.. 322.1.4Optimality Conditions垂Polyhedral Two-Stage Problems422.2.1General Properties422.2.2Expected recourse CostOptimality conditions2.3 General Two-Stage Problems82.3.1Problem Formulation, Interchangeability482.3.2Convex Two-Stage Problems2.4 Nonanticipativity2009/8/20page villContents2.4.1Scenario formulation2.4.2Dualization of Nonanticipativity Constraints2.4.3Nonanticipativity duality for general Distributions2.4.4Value of perfect infExercises3 Multistage problems3. 1 Problem Formulation633.1.1The general setting3.1The Linear case653.1.3Scenario trees3.1.4Algebraic Formulation of nonanticipativity constraints 7lDuality....763.2.1Convex multistage problems·763.2.2Optimality Conditions3.2.3Dualization of Feasibility Constraints3.2.4Dualization of nonanticipativity ConstraintsExercises4 Optimization models with Probabilistic Constraints874.1 Introduction874.2 Convexity in Probabilistic Optimization4.2Generalized Concavity of Functions and measures4.2.2Convexity of probabilistically constrained sets1064.2.3Connectedness of Probabilistically Constrained Sets... 113Separable probabilistic Constraints.1144.3Continuity and Differentiability Properties ofDistribution functions4.3.2p-Efficient Points.1154.3.3Optimality Conditions and Duality Theory1224 Optimization Problems with Nonseparable Probabilistic Constraints.. 1324.4Differentiability of Probability Functions and OptimalityConditions13344.2Approximations of Nonseparable ProbabilisticConstraints134.5 Semi-infinite Probabilistic Problems144E1505 Statistical Inference155Statistical Properties of Sample Average Approximation Estimators.. 1555.1.1Consistency of SAA estimators1575.1.2Asymptotics of the saa Optimal value1635.1.3Second order asStochastic Programs5.2 Stoch1745.2.1Consistency of solutions of the SAA GeneralizedEquatio1752009/8/20pContents5.2.2Atotics of saa generalized equations estimators 1775.3 Monte Carlo Sampling Methods180Exponential Rates of Convergence and Sample sizeEstimates in the Case of a finite Feasible se1815.3.2Sample size estimates in the General Case1855.3.3Finite Exponential Convergence1915.4 Quasi-Monte Carlo Methods1935.Variance-Reduction Techniques198Latin hmpling1985.5.2Linear Control random variables method200ng and likelihood ratio methods 205.6 Validation analysis5.6.1Estimation of the optimality g2025.6.2Statistical Testing of Optimality Conditions2075.7Constrained Probler5.7.1Monte Carlo Sampling Approach2105.7.2Validation of an Optimal solution5.8 SAA Method Applied to Multistage Stochastic Programmin205.8.1Statistical Properties of Multistage SAA Estimators22l5.8.2Complexity estimates of Multistage Programs2265.9 Stochastic Approximation Method2305.9Classical Approach5.9.2Robust sA approach..23359.3Mirror Descent sa method235.9.4Accuracy Certificates for Mirror Descent Sa Solutions.. 244Exercis6 Risk Averse Optimi2536.1 Introductio6.2 Mean-Risk models.2546.2.1Main ideas of mean -Risk analysis546.2.2Semideviation6.2.3Weighted Mean Deviations from Quantiles.2566.2.4Average value-at-Risk2576.3 Coherent risk measures2616.3.1Differentiability Properties of Risk Measures2656.3.2Examples of risk Measures..2696.3.3Law invariant risk measures and Stochastic orders2796.3.4Relation to Ambiguous Chance Constraints2856.4 Optimization of risk measures.2886.4.1Dualization of Nonanticipativity Constraints2916.4.2Examples...2956.5 Statistical Properties of Risk measures6.5.IAverage value-at-Ris6.52Absolute semideviation risk measure301Von mises statistical functionals3046.6The problem of moments306中2009/8/20page xContents6.7 Multistage Risk Averse Optimization3086.7.1Scenario tree formulation3086.7.2Conditional risk mappings3156.7.3Risk Averse multistage Stochastic Programming318Exercises3287 Background material3337.1 Optimization and Convex Analysis..334Directional Differentiability3347.1.2Elements of Convex Analysis3367.1.3Optimization and duality3397.1.4Optimality Conditions.............3467.1.5Perturbation analysis3517.1.6Epiconvergence3572 Probability3597.2.1Probability spaces and random variables7.2.2Conditional Probability and Conditional Expectation... 36372.3Measurable multifunctions and random functions3657.2.4Expectation Functions.3687.2.5Uniform Laws of Large Numbers...,,3747.2.6Law of Large Numbers for Random Sets andSubdifferentials3797.2.7Delta method7.2.8Exponential Bounds of the Large Deviations Theory3877.2.9Uniform Exponential Bounds7.3 Elements of Functional analysis3997.3Conjugate duality and differentiability.......... 4017.3.2Lattice structure4034058 Bibliographical remarks407Biibliography415Index4312009/8/20pageList of Notationsequal by definition, 333IR", n-dimensional space, 333A, transpose of matrix(vector)A, 3336I, domain of the conjugate of risk mea-C(X) space of continuous functions, 165sure p, 262CK, polar of cone C, 337Cn, the space of nonempty compact sub-C(v,R"), space of continuously differ-sets of r 379entiable mappings,176set of probability density functions,I Fr influence function. 3042L, orthogonal of (linear) space L, 41Sz, set of contact points, 3990(1), generic constant, 188b(k; a, N), cdf of binomial distribution,Op(), term, 382214S, the set of &-optimal solutions of theo, distance generating function, 236true problem, 18g(x), right-hand-side derivative, 297Va(a), Lebesgue measure of set A C RdCl(A), topological closure of set A, 334195conv(C), convex hull of set C, 337W,(U), space of Lipschitz continuousCorr(X, Y), correlation of X and Y 200functions. 166. 353CoV(X, Y, covariance of X and y, 180[a]+=max{a,0},2ga, weighted mean deviation, 256IA(, indicator function of set A, 334Sc(, support function of set C, 337n(n.f. p). space. 399A(x), set ofdist(x, A), distance from point x to set Ae multipliers vectors334348dom f, domain of function f, 333N(μ,∑), nonmal distribution,16Nc, normal cone to set C, 337dom 9, domain of multifunction 9, 365IR, set of extended real numbers. 333o(z), cdf of standard normal distribution,epif, epigraph of function f, 333IIx, metric projection onto set X, 231epiconvergence, 377convergence in distribution, 163SN, the set of optimal solutions of the0(x,h)d order tangent set 348SAA problem. 156AVOR. Average value-at-Risk. 258Sa, the set of 8-optimal solutions of thef, set of probability measures, 306SAA problem. 181ID(A, B), deviation of set A from set Bn,N, optimal value of the Saa problem,334156IDIZ], dispersion measure of random vari-N(x), sample average function, 155able 7. 2541A(, characteristic function of set A, 334吧, expectation,361int(C), interior of set C, 336TH(A, B), Hausdorff distance between setsLa」, integer part of a∈R,219A and B. 334Isc f, lower semicontinuous hull of funcN, set of positive integers, 359tion f, 3332009/8/20pageList of notationsRc, radial cone to set C, 337C, tangent cone to set C, 337V-f(r), Hessian matrix of second orderpartial derivatives, 179a. subdifferential. 338a, Clarke generalized gradient, 336as, epsilon subdifferential, 380pos w, positive hull of matrix W, 29Pr(A), probability of event A, 360ri relative interior. 337upper semideviation, 255Le, lower semideviation, 255@R. Value-at-Risk. 25Var[X], variance of X, 149, optimal value of the true problem, 1565=(51,……,5), history of the process,{a,b},186r, conjugate of function/, 338f(x, d), generalized directional deriva-g(x, h), directional derivative, 334O,(, term, 382p-efficient point, 116lid, independently identically distributed,1562009/8/20page xlllPrefaceThe main topic of this book is optimization problems involving uncertain parametersfor which stochastic models are available. Although many ways have been proposed tomodel uncertain quantities stochastic models have proved their flexibility and usefulnessin diverse areas of science. This is mainly due to solid mathematical foundations andtheoretical richness of the theory of probabilitystochastic processes, and to soundstatistical techniques of using real dataOptimization problems involving stochastic models occur in almost all areas of scienceand engineering, from telecommunication and medicine to finance This stimulates interestin rigorous ways of formulating, analyzing, and solving such problems. Due to the presenceof random parameters in the model, the theory combines concepts of the optimization theory,the theory of probability and statistics, and functional analysis. Moreover, in recent years thetheory and methods of stochastic programming have undergone major advances. all thesefactors motivated us to present in an accessible and rigorous form contemporary models andideas of stochastic programming. We hope that the book will encourage other researchersto apply stochastic programming models and to undertake further studies of this fascinatinand rapidly developing areaWe do not try to provide a comprehensive presentation of all aspects of stochasticprogramming, but we rather concentrate on theoretical foundations and recent advances inselected areas. The book is organized into seven chapters The first chapter addresses modeling issues. The basic concepts, such as recourse actions, chance(probabilistic)constraintsand the nonanticipativity principle, are introduced in the context of specific models. Thediscussion is aimed at providing motivation for the theoretical developments in the book,rather than practical recommendationsChapters 2 and 3 present detailed development of the theory of two-stage and multistage stochastic programming problems. We analyze properties of the models and developoptimality conditions and duality theory in a rather general setting. Our analysis coversgeneral distributions of uncertain parameters and provides special results for discrete distributions, which are relevant for numerical methods. Due to specific properties of two- andmultistage stochastic programming problems, we were able to derive many of these resultswithout resorting to methods of functional analvsisThe basic assumption in the modeling and technical developments is that the proba-bility distribution of the random data is not influenced by our actions(decisions). In someapplications, this assumption could be unjustified. However, dependence of probability dis-tribution on decisions typically destroys the convex structure of the optimization problemsconsidered, and our analysis exploits convexity in a significant way
    2020-12-09下载
    积分:1
  • MIMO注水功率分配MATLAB
    仿真了MIMO在自由空间信道条件下注水功率分配方式,详细的M文件及注释
    2021-05-06下载
    积分:1
  • FIR滤波器的VHDL实现
    本程序是分布式算法实现FIR滤波器的VHDL实现部分,与本程序对应的matlab仿真见“FIR滤波器的matlab仿真”程序,说明文档见“FIR滤波器的matlab仿真与VHDL实现”
    2021-05-06下载
    积分:1
  • 大学生综合素质测评系统
    该系统是一个数据库管理系统,当今数据库系统的开发工具种类非常多。常用数据库开发工具有面向对象的如:Informix-4gl, C,Pascal语言;有面向过程的如 visual foxpro,visual basic,还有web方式的如: asp.jsp与数据库的连接。
    2021-04-22 20:28:48下载
    积分:1
  • EXCEL读取和写入
    使用LABVIEW读取和写入Excel,使用Labview2017,可以是低版本,但是函数选板中至少要有报表生成部分。
    2020-12-10下载
    积分:1
  • LC并联谐振仿真Proteus.dsn
    【实例简介】LC并联谐振仿真运行于Proteus仿真软件
    2021-11-28 00:36:47下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载