登录
首页 » Others » 技术方案模板(合集)

技术方案模板(合集)

于 2020-12-09 发布
0 281
下载积分: 1 下载次数: 2

代码说明:

软件技术方案模板合集,写技术方案再也不需要开百度文库会员了。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 宽带信号DOA估计
    【实例简介】基于宽带信号稀疏分解的DOA估计算法的matlab仿真!
    2021-10-29 00:31:36下载
    积分:1
  • 基于MSP430F5529单片机的太阳能路灯控制器的设计报告
    【实例简介】资源中描述了在MSP430F5529单片机作为核心控制器的前提下,制作太阳能路灯控制器的设计方案,包括详细的软硬件设计流程。
    2021-11-14 00:44:22下载
    积分:1
  • AdaBoost等MatLab代码(带测试数据)
    本人研究生阶段写文档所写的Matlab代码。包括:1、图片预处理;2、特性提取:颜色、灰度共生矩阵、灰度差分、Harr-Like、等多个特征提取算法;3、特性选择:从特征向量中选取有效的特性;4、基础算法:AdaBoost的训练与测试; Bayes算法5、AdaBoost的改进:Boosting, CastBoost、FloatBoost前面一次上次没有带测试数据。这次带上测试数据。http://download.csdn.net/download/kofsky/4954247
    2020-11-28下载
    积分:1
  • sd卡读写verilog
    这是利用FPGA来读写SD卡的程序,是开源程序。
    2020-12-05下载
    积分:1
  • Lectures on Stochastic Programming-Model
    这是一本关于随机规划比较全面的书!比较难,不太容易啃,但是读了之后收获很大。这是高清版的!To Julia, Benjamin, Daniel, Nalan, and Yael;to Tsonka Konstatin and Marekand to the memory of feliks, Maria, and dentcho2009/8/20pagContentsList of notationserace1 Stochastic Programming ModelsIntroduction1.2 Invento1.2.1The news vendor problem1.2.2Constraints12.3Multistage modelsMultiproduct assembl1.3.1Two-Stage Model1.3.2Chance Constrained ModeMultistage modelPortfolio selection131.4.1Static model14.2Multistage Portfolio selection14.3Decision rule211.5 Supply Chain Network Design22Exercises2 Two-Stage Problems272.1 Linear Two-Stage Problems2.1.1Basic pi272.1.2The Expected Recourse Cost for Discrete Distributions 302.1.3The Expected Recourse Cost for General Distributions.. 322.1.4Optimality Conditions垂Polyhedral Two-Stage Problems422.2.1General Properties422.2.2Expected recourse CostOptimality conditions2.3 General Two-Stage Problems82.3.1Problem Formulation, Interchangeability482.3.2Convex Two-Stage Problems2.4 Nonanticipativity2009/8/20page villContents2.4.1Scenario formulation2.4.2Dualization of Nonanticipativity Constraints2.4.3Nonanticipativity duality for general Distributions2.4.4Value of perfect infExercises3 Multistage problems3. 1 Problem Formulation633.1.1The general setting3.1The Linear case653.1.3Scenario trees3.1.4Algebraic Formulation of nonanticipativity constraints 7lDuality....763.2.1Convex multistage problems·763.2.2Optimality Conditions3.2.3Dualization of Feasibility Constraints3.2.4Dualization of nonanticipativity ConstraintsExercises4 Optimization models with Probabilistic Constraints874.1 Introduction874.2 Convexity in Probabilistic Optimization4.2Generalized Concavity of Functions and measures4.2.2Convexity of probabilistically constrained sets1064.2.3Connectedness of Probabilistically Constrained Sets... 113Separable probabilistic Constraints.1144.3Continuity and Differentiability Properties ofDistribution functions4.3.2p-Efficient Points.1154.3.3Optimality Conditions and Duality Theory1224 Optimization Problems with Nonseparable Probabilistic Constraints.. 1324.4Differentiability of Probability Functions and OptimalityConditions13344.2Approximations of Nonseparable ProbabilisticConstraints134.5 Semi-infinite Probabilistic Problems144E1505 Statistical Inference155Statistical Properties of Sample Average Approximation Estimators.. 1555.1.1Consistency of SAA estimators1575.1.2Asymptotics of the saa Optimal value1635.1.3Second order asStochastic Programs5.2 Stoch1745.2.1Consistency of solutions of the SAA GeneralizedEquatio1752009/8/20pContents5.2.2Atotics of saa generalized equations estimators 1775.3 Monte Carlo Sampling Methods180Exponential Rates of Convergence and Sample sizeEstimates in the Case of a finite Feasible se1815.3.2Sample size estimates in the General Case1855.3.3Finite Exponential Convergence1915.4 Quasi-Monte Carlo Methods1935.Variance-Reduction Techniques198Latin hmpling1985.5.2Linear Control random variables method200ng and likelihood ratio methods 205.6 Validation analysis5.6.1Estimation of the optimality g2025.6.2Statistical Testing of Optimality Conditions2075.7Constrained Probler5.7.1Monte Carlo Sampling Approach2105.7.2Validation of an Optimal solution5.8 SAA Method Applied to Multistage Stochastic Programmin205.8.1Statistical Properties of Multistage SAA Estimators22l5.8.2Complexity estimates of Multistage Programs2265.9 Stochastic Approximation Method2305.9Classical Approach5.9.2Robust sA approach..23359.3Mirror Descent sa method235.9.4Accuracy Certificates for Mirror Descent Sa Solutions.. 244Exercis6 Risk Averse Optimi2536.1 Introductio6.2 Mean-Risk models.2546.2.1Main ideas of mean -Risk analysis546.2.2Semideviation6.2.3Weighted Mean Deviations from Quantiles.2566.2.4Average value-at-Risk2576.3 Coherent risk measures2616.3.1Differentiability Properties of Risk Measures2656.3.2Examples of risk Measures..2696.3.3Law invariant risk measures and Stochastic orders2796.3.4Relation to Ambiguous Chance Constraints2856.4 Optimization of risk measures.2886.4.1Dualization of Nonanticipativity Constraints2916.4.2Examples...2956.5 Statistical Properties of Risk measures6.5.IAverage value-at-Ris6.52Absolute semideviation risk measure301Von mises statistical functionals3046.6The problem of moments306中2009/8/20page xContents6.7 Multistage Risk Averse Optimization3086.7.1Scenario tree formulation3086.7.2Conditional risk mappings3156.7.3Risk Averse multistage Stochastic Programming318Exercises3287 Background material3337.1 Optimization and Convex Analysis..334Directional Differentiability3347.1.2Elements of Convex Analysis3367.1.3Optimization and duality3397.1.4Optimality Conditions.............3467.1.5Perturbation analysis3517.1.6Epiconvergence3572 Probability3597.2.1Probability spaces and random variables7.2.2Conditional Probability and Conditional Expectation... 36372.3Measurable multifunctions and random functions3657.2.4Expectation Functions.3687.2.5Uniform Laws of Large Numbers...,,3747.2.6Law of Large Numbers for Random Sets andSubdifferentials3797.2.7Delta method7.2.8Exponential Bounds of the Large Deviations Theory3877.2.9Uniform Exponential Bounds7.3 Elements of Functional analysis3997.3Conjugate duality and differentiability.......... 4017.3.2Lattice structure4034058 Bibliographical remarks407Biibliography415Index4312009/8/20pageList of Notationsequal by definition, 333IR", n-dimensional space, 333A, transpose of matrix(vector)A, 3336I, domain of the conjugate of risk mea-C(X) space of continuous functions, 165sure p, 262CK, polar of cone C, 337Cn, the space of nonempty compact sub-C(v,R"), space of continuously differ-sets of r 379entiable mappings,176set of probability density functions,I Fr influence function. 3042L, orthogonal of (linear) space L, 41Sz, set of contact points, 3990(1), generic constant, 188b(k; a, N), cdf of binomial distribution,Op(), term, 382214S, the set of &-optimal solutions of theo, distance generating function, 236true problem, 18g(x), right-hand-side derivative, 297Va(a), Lebesgue measure of set A C RdCl(A), topological closure of set A, 334195conv(C), convex hull of set C, 337W,(U), space of Lipschitz continuousCorr(X, Y), correlation of X and Y 200functions. 166. 353CoV(X, Y, covariance of X and y, 180[a]+=max{a,0},2ga, weighted mean deviation, 256IA(, indicator function of set A, 334Sc(, support function of set C, 337n(n.f. p). space. 399A(x), set ofdist(x, A), distance from point x to set Ae multipliers vectors334348dom f, domain of function f, 333N(μ,∑), nonmal distribution,16Nc, normal cone to set C, 337dom 9, domain of multifunction 9, 365IR, set of extended real numbers. 333o(z), cdf of standard normal distribution,epif, epigraph of function f, 333IIx, metric projection onto set X, 231epiconvergence, 377convergence in distribution, 163SN, the set of optimal solutions of the0(x,h)d order tangent set 348SAA problem. 156AVOR. Average value-at-Risk. 258Sa, the set of 8-optimal solutions of thef, set of probability measures, 306SAA problem. 181ID(A, B), deviation of set A from set Bn,N, optimal value of the Saa problem,334156IDIZ], dispersion measure of random vari-N(x), sample average function, 155able 7. 2541A(, characteristic function of set A, 334吧, expectation,361int(C), interior of set C, 336TH(A, B), Hausdorff distance between setsLa」, integer part of a∈R,219A and B. 334Isc f, lower semicontinuous hull of funcN, set of positive integers, 359tion f, 3332009/8/20pageList of notationsRc, radial cone to set C, 337C, tangent cone to set C, 337V-f(r), Hessian matrix of second orderpartial derivatives, 179a. subdifferential. 338a, Clarke generalized gradient, 336as, epsilon subdifferential, 380pos w, positive hull of matrix W, 29Pr(A), probability of event A, 360ri relative interior. 337upper semideviation, 255Le, lower semideviation, 255@R. Value-at-Risk. 25Var[X], variance of X, 149, optimal value of the true problem, 1565=(51,……,5), history of the process,{a,b},186r, conjugate of function/, 338f(x, d), generalized directional deriva-g(x, h), directional derivative, 334O,(, term, 382p-efficient point, 116lid, independently identically distributed,1562009/8/20page xlllPrefaceThe main topic of this book is optimization problems involving uncertain parametersfor which stochastic models are available. Although many ways have been proposed tomodel uncertain quantities stochastic models have proved their flexibility and usefulnessin diverse areas of science. This is mainly due to solid mathematical foundations andtheoretical richness of the theory of probabilitystochastic processes, and to soundstatistical techniques of using real dataOptimization problems involving stochastic models occur in almost all areas of scienceand engineering, from telecommunication and medicine to finance This stimulates interestin rigorous ways of formulating, analyzing, and solving such problems. Due to the presenceof random parameters in the model, the theory combines concepts of the optimization theory,the theory of probability and statistics, and functional analysis. Moreover, in recent years thetheory and methods of stochastic programming have undergone major advances. all thesefactors motivated us to present in an accessible and rigorous form contemporary models andideas of stochastic programming. We hope that the book will encourage other researchersto apply stochastic programming models and to undertake further studies of this fascinatinand rapidly developing areaWe do not try to provide a comprehensive presentation of all aspects of stochasticprogramming, but we rather concentrate on theoretical foundations and recent advances inselected areas. The book is organized into seven chapters The first chapter addresses modeling issues. The basic concepts, such as recourse actions, chance(probabilistic)constraintsand the nonanticipativity principle, are introduced in the context of specific models. Thediscussion is aimed at providing motivation for the theoretical developments in the book,rather than practical recommendationsChapters 2 and 3 present detailed development of the theory of two-stage and multistage stochastic programming problems. We analyze properties of the models and developoptimality conditions and duality theory in a rather general setting. Our analysis coversgeneral distributions of uncertain parameters and provides special results for discrete distributions, which are relevant for numerical methods. Due to specific properties of two- andmultistage stochastic programming problems, we were able to derive many of these resultswithout resorting to methods of functional analvsisThe basic assumption in the modeling and technical developments is that the proba-bility distribution of the random data is not influenced by our actions(decisions). In someapplications, this assumption could be unjustified. However, dependence of probability dis-tribution on decisions typically destroys the convex structure of the optimization problemsconsidered, and our analysis exploits convexity in a significant way
    2020-12-09下载
    积分:1
  • LabVIEW静态和动态调用子VI经典示例.rar
    【实例简介】演示了如何静态调用和动态调用子VI,子VI可以并行运行或者阻塞调用程序的运行。代码非常清晰,可以直接使用。
    2021-11-30 00:34:28下载
    积分:1
  • 51单片机交通灯
    【实例简介】用8051实现交通灯控制
    2021-08-07 00:31:03下载
    积分:1
  • MT7620A+WM8960硬件参考设计
    MT7620A+WM8960做的语言参考设计资料,又PCB和原理图,是PADS格式
    2021-05-06下载
    积分:1
  • 永磁同步电机矢量变换控制MATLAB仿真
    永磁同步电机矢量变换控制MATLAB仿真,利用其模块库,在分析了永磁同步电机数学模型的基础上,给出了永磁同步电机的建模方法
    2020-12-01下载
    积分:1
  • 谱方法的数值分析 !!.rar
    【实例简介】谱方法的数值分析 全文目录 前言 第一章 预备知识 1、1Hilbert空间和Banach空间初步 1、1、1基本概念 1、1、2投影定理 1、1、3Riesz表现定理 1、1、4线性算子 1、2Sobolev空间简介 1、2、1广义导数 1、2、2Sobolev空间 1、2、3嵌入定理 1、3紧算子与特征展开 1、3、1标准正交系 1、3、2紧算子与投影算子 1、3、3自共轭紧算子 1、4快速Fourier变换(FFT) 1、5几个常用的不等式 1、5、1Gronwall不等式(连续形式) 1、5、2Gronwall不等式(离散形式) 1、5、3Hardy型不等式 参考文献 第二章 谱方法和正交多项式 2、1谱方法的某些例子 2、1、1一阶波动方程的Fourier谱方法 2、1、2Poisson方程的LegendreTau方法 2、1、3热传导方程的Chebyshev配点法 2、2正交多项式 2、2、1Fourier系统——连续Fourier展开 2、2、2Fourier系统——离散Fourier展开 2、2、3微分 2、3Sturm—Liouville问题 2、3、1正则的Sturm—Liouvillie问题 2、3、2奇异的Sturm—Liouvilli问题 2、4其它正交多项式系统 2、4、1Gauss型求积公式和离散多项式变换 2、4、2(-1,1)上的正交多项式 2、4、3无界区间情形 参考文献 第三章 投影算子和插值算子的逼近 3、1Fourier逼近 3、2Chebyshev逼近 3、3Legendre逼近 3、4其它正交多项式逼近 3、5多维情形 3、5、1Fourier逼近 3、5、2Chebyshev逼近 3、5、3Legendre逼近 3、6Fourier逼近和Chebyshev逼近的联合 3、7带Chebyshev权的Sobolev嵌入定理 参考文献 第四章 谱方法的稳定性的收敛性理论 4、1Lax—Milgram定理和Lax—Richtmyer等价性定理 4、1、1Lax—Milgram定理和Baguska定理 4、1、2Lax—Richtmyer等价性定理 4、2线性定常问题谱逼近的一般框架 4、2、1Galerkin方法 4、2、2Tau方法 4、2、3配点法(拟谱方法) 4、3线性发展方程谱逼近的一般框架 4、3、1稳定性和收敛性条件:抛物情形 4、3、2稳定性和收敛性条件:双曲情形 参考文献 第五章 某些线性和非线性方程的谱方法 5、1二维涡度方程的Fourier谱方法 5、2KdV方程的Fourier拟谱方法 5、3二维抛物型方程的Chebyshev拟谱方法 5、3、1半离散Chebyshev拟谱方法 5、3、2全离散Chebyshev拟谱方法 5、4广义BBM方程的Chebyshev拟谱方法 5、5变系数二阶椭圆方程Dirichlet问题的Chebyshev拟谱方法 5、6定常Burgers方程的Chebyshev谱方法 参考文献 第六章 谱方法的某些新进展 6、1用Gegenbauer多项式恢复指数精度 6、1、1Gegenbauer多项式及其主要性质 6、1、2截断误差 6、1、3正则性误差 6、2区域分解法 6、3非线性Galerkin谱方法 6、4具弱阻尼的非线性Schrodinger方程的大时间误差估计 6、5时空方向的谱逼近 参考文献
    2021-11-24 00:33:45下载
    积分:1
  • 696516资源总数
  • 106409会员总数
  • 8今日下载