登录
首页 » Others » matlab汉宁窗带通滤波器的设计

matlab汉宁窗带通滤波器的设计

于 2020-12-09 发布
0 216
下载积分: 1 下载次数: 3

代码说明:

用matlab汉宁窗的带通滤波器的设计,希望有用

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • A*算法用于动态路径规划
    A*算法用于动态路径规划,实现功能:静态复杂环境下路径规划;简单地对地图分析并做出处理决策;动态环境下路径规划
    2020-12-07下载
    积分:1
  • 基于ANN的6种(2ASK、4ASK、2FSK、4FSK、2PSK、4PSK)调制信号自动调制识别
    基于ANN的6种信号自动调制识别,内附完整代码。6种信号分别为2ASK、4ASK、2FSK、4FSK、2PSK、4PSK。适合初学者使用
    2020-12-01下载
    积分:1
  • 六自由度机械臂正逆运动Matlab仿真
    自己做的机械臂仿真,使用的MATLAB2016b。运行znGUI使用,动态显示机械臂变化,各个关节角的具体变化从变量cz中提取
    2020-11-30下载
    积分:1
  • 基于DDE通信的MATLAB与组态王之间的数据传送
    动态数据交换DDE(Dynamic Data Exchange)是在Windows平台上不同应用程序之间共享数据的一个通信协议,DDE技术使用共享内存来实现应用程序之间实时交换数据和发送指令,以及使用DDE协议获得传递数据的同步。因此可以通过DDE协议将组态王与MATLAB结合起来。
    2020-12-02下载
    积分:1
  • ad7606的电压采集,实测和仿真(ad7606.v)
    ad7606的电压采集,实测和仿真(ad7606.v)
    2021-05-06下载
    积分:1
  • 泰坦尼克数据集
    泰坦尼克数据集,包括train.csv/test.csv/gendermodel.csv
    2021-05-07下载
    积分:1
  • STM32实现ADPCM码解码
    使用STM32 实现对音频的 编码 解码 使用的编码算法为ADPCM
    2021-05-06下载
    积分:1
  • 稀疏自码深度学习的Matlab实现
    稀疏自编码深度学习的Matlab实现,sparse Auto coding,Matlab codetrain, m/7% CS294A/CS294W Programming Assignment Starter CodeInstructions%%%This file contains code that helps you get started ontheprogramming assignment. You will need to complete thecode in sampleIMAgEsml sparseAutoencoder Cost m and computeNumericalGradientml For the purpose of completing the assignment, you domot need tochange the code in this filecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencodtrain.m∥%%========%6% STEP 0: Here we provide the relevant parameters valuesthat willl allow your sparse autoencoder to get good filters; youdo not need to9 change the parameters belowvisibleSize =8*8; number of input unitshiddensize 25number of hidden unitssparsity Param =0.01; desired average activation ofthe hidden units7 (This was denoted by the greek alpharho, which looks like a lower-case pcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod4/57train.,m∥in the lecture notes)1 ambda=0.0001%o weight decay parameterbeta 3%o weight of sparsity penalty term%%==:79 STEP 1: Implement sampleIMAGESAfter implementing sampleIMAGES, the display_networkcommand shouldfo display a random sample of 200 patches from the datasetpatches sampleIMAgES;display_network(patches(:, randi(size(patches, 2), 204, 1)), 8)%为产生一个204维的列向量,每一维的值为0~10000curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod5/57train.m/v%中的随机数,说明是随机取204个 patch来显示%o Obtain random parameters thetatheta= initializeParameters ( hiddenSize, visibleSize)%%=============三三三三====================================97 STEP 2: Implement sparseAutoencoder CostYou can implement all of the components (squared errorcost, weight decay termsparsity penalty) in the cost function at once, butit may be easier to do%o it step-by-step and run gradient checking (see STEP3 after each stepWecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod6/57train. m vb suggest implementing the sparseAutoencoder Cost functionusing the following steps(a) Implement forward propagation in your neural networland implement the%squared error term of the cost function. Implementbackpropagation tocompute the derivatives. Then (using lambda=beta=(run gradient Checking%to verify that the calculations corresponding tothe squared error costterm are correctcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod7/57train. m vl(b) Add in the weight decay term (in both the cost funcand the derivativecalculations), then re-run Gradient Checking toverify correctnessl (c) Add in the sparsity penalty term, then re-run gradiChecking toverify correctnessFeel free to change the training settings when debuggingyour%o code. (For example, reducing the training set sizecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod8/57train m vl/number of hidden units may make your code run fasterand setting betaand/or lambda to zero may be helpful for debuggingHowever, in yourfinal submission of the visualized weights, please useparameters web gave in Step 0 abovecoS七grad]sparseAutoencoderCost(theta, visibleSize,hiddensize, lambda,sparsityParam, beta,patches)二〓二二二二二二二〓二〓二〓二〓=二====〓=curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod9/57train.m vlll96% STeP 3: Gradient CheckingHint: If you are debugging your code, performing gradienchecking on smaller modelsand smaller training sets (e. g, using only 10 trainingexamples and 1-2 hiddenunits) may speed things upl First, lets make sure your numerical gradient computationis correct for a%o simple function. After you have implemented computeNumerun the followingcheckNumericalGradientocurer:YiBinYUyuyibintony@163.com,WuYiUniversityDeep Learning, MATLAB Code for Sparse Autoencode10/57
    2020-12-05下载
    积分:1
  • T-S模糊辨识与广义预测控制MATLAB源序及说明文档.rar
    T-S模糊辨识与广义预测控制MATLAB源程序及说明文档。
    2020-11-29下载
    积分:1
  • beamer风格的ppt模板
    beamer风格的ppt模板
    2020-03-18下载
    积分:1
  • 696518资源总数
  • 105096会员总数
  • 12今日下载