-
fft
有关FFT的应用仿真,包括:FFT处理仿真、FFT加窗、FFT分辨率、频谱泄露
(Simulation on the application of FFT
)
- 2021-04-18 10:48:52下载
- 积分:1
-
Boltzmann
使用格子boltzmann方法模拟气液两相流运动(Lattice Boltzmann method(LBT) to simulate two phase flow)
- 2021-01-22 16:28:39下载
- 积分:1
-
Root_Loci
根轨迹文件 多刚体动力学 方程 根分布 稳定分析 (Root locus document root distribution multibody dynamics equations stability analysis)
- 2014-09-21 21:13:28下载
- 积分:1
-
vehicle-bridge-coupled
ANSYS车桥耦合瞬态分析代码,实现车辆移动荷载加载(ANSYS-vehicle bridge coupled)
- 2016-12-17 09:41:07下载
- 积分:1
-
yiyuanerci2
用Fortran编程求解简单的一元二次方程案例(Solving quadratic equation of one variable)
- 2020-06-16 12:28:32下载
- 积分:1
-
Lax_bassi_rebay
间断有限元方法( Runge–Kutta discontinuous Galerkin )求解N-S方程 算例为一维sod问题
流通量为BR1(Discontinuous Finite Element Method (Runge-Kutta discontinuous Galerkin) N-S equation solving a one-dimensional example problem sod
Liquidity is BR1)
- 2016-03-16 16:56:08下载
- 积分:1
-
matlab-fluent-and-heat-transfer
matlab编写的流体力学计算和传热计算程序,一些例子,主要用于流体力学计算和传热的计算,为设计实例(Matlab prepared by the computational fluid dynamics and heat transfer calculation procedures, some examples, mainly used for computational fluid dynamics and heat transfer calculation for the design example)
- 2012-07-01 17:10:21下载
- 积分:1
-
5
说明:
★问题描述:
给出平面上的N 个二维点,求出距离最小的2 个点对。本题中距离定义为他们的直
线距离。例如(0,0) (3,4)的距离为5.
★数据输入:
有多组数据,对于每组数据,第一行是一个数字N 表示点的个数。N=0 的时候说明
输入结束。之后N 行,每行有2 个浮点数x_i,y_i 表示第i 个点的坐标。(1<=N<=10000
0,0<=|x_i|,|y_i|<=10^9)
★结果输出:
输出一个浮点数,表示最近点对的距离除以2,保留2 位小数(四舍五入)。
- 2013-12-03 14:57:02下载
- 积分:1
-
bingtaixitong
对病态系统采用了四阶龙格库塔法和蛙跳法进行了仿真,得到了很好的实验结果(Pathological systems using fourth-order Runge-Kutta method and the leapfrog method for the simulation, the experimental results)
- 2012-07-07 09:47:50下载
- 积分:1
-
LECalculator
3.1 线性方程组类设计
3.2 全选主元高斯消去法
3.3 全选主元高斯-约当消去法
3.4 复系数方程组的全选主元高斯消去法
3.5 复系数方程组的全选主元高斯-约当消去法
3.6 求解三对角线方程组的追赶法
3.7 一般带型方程组的求解
3.8 求解对称方程组的分解法
3.9 求解对称正定方程组的平方根法
3.10 求解大型稀疏方程组的全选主元高斯-约当消去法
3.11 求解托伯利兹方程组的列文逊方法
3.12 高斯-赛德尔迭代法
3.13 求解对称正定方程组的共轭梯度法
3.14 求解线性最小二乘问题的豪斯荷尔德变换法
3.15 求解线性最小二乘问题的广义逆法
3.16 病态方程组的求解 (3.1 system of linear equations class designs 3.2 to choose the principal element gaussian elimination 3.3 to elect principal element Gauss- when approximately the elimination 3.4 duplicate coefficient equation sets all choose the principal element gaussian elimination 3.5 duplicate coefficient equation sets to elect principal element Gauss- when approximately the elimination 3.6 solve three diagonal line equation sets to pursue the law 3.7 common belt equation set s solution 3.8 solution symmetrical equation set s resolution 3.9 solution symmetrical Zhengding equation set s square root method 3.10 solution large-scale sparse equation set to elect principal element Gauss- when approximately the elimination 3.11 solutions hold the Belize equation set s row article to abdicate House Holland who method 3.12 Gauss- the Seydell repetitive process 3.13 solution symmetrical Zhengding equation set s conjugate gradient method 3.14 solution linearity is smallest two rides the questionThe German m)
- 2010-12-20 21:11:04下载
- 积分:1